Studium

Master: Modulhandbuch und Modulplan

Liste der Module nach Thema / List of Modules according to theme

 

HINWEIS: Die Modulliste für alle Module auf dieser Seite ist noch in Bearbeitung, bitte informieren Sie sich über den Link zum Module Handbook Geosciences

NOTE: The module list for all modules shown on this page is still under construction, please check the link to the Module Handbook Geosciences for up to date information. 

Analytical methods in Earth Sciences

Term: 2. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Dr. René Hoffmann and Dr. Niels Jöns

Courses:
a) Lecture: Electron beam microanalysis, 2 SWS
b) Practical exercises on electron beam microanalysis (SEM, CL, EMPA), 2 SWS

Prerequisites: 

Learning outcomes: After completion of this module the students

  • understand the applicability of electron beam microanalytical methods.
  • know different kinds of methods (SEM, EMPA, TEM, CL, Auger electron)
  • are able to evaluate the strengths and limitations and perform an analysis of errors.
  • gained practical experience of diverse electron beam analytical tools.

Content:
a) Lecture
Overview of the use of electron beam methods for the analysis of solid materials. Electron – matter interaction (elastic scattering, inelastic scattering, production of X-rays, Auger electrons, and Cathodoluminescence). Construction principles and working of different instruments (TEM, SEM, EMPA, STEM, CL microscopes). Functionality of different parts of the instruments such as pumps, electron optic, generation of electron beams). Analytical methods and interpretation of analytical results (EELS, EBSD, electron optical images, EDX, WDX, diffraction images).

b) Practical exercises on electron beam microanalysis (SEM, CL, EMPA)
Familiarization with the equipment and their parts. Coating a sample with C or Au. Inserting and extracting a sample holder from the sample chamber under vacuum. Adjusting the electron beam. Navigation on the sample. Use of different detectors (SE, BSE, CL, EBSD) for imaging. Experiments on the effects of accelerating voltage and sample current. Qualitative analysis and identification of minerals with the help of the energy dispersive detectors. Collecting wavelength dispersive spectra in the electron microprobe. Comparison of results from EDX and WDS. Production of element distribution maps. Generation of crystallographic orientation images (SEM). Conceiving a quantitative analytical program. Determination of peak and background positions, choice of spectrometers, standard materials, counting times and beam parameters (EMPA). Evaluation of the analyses through the calculation of mineral formulae and estimate of errors.

Teaching methods: Lectures and practicals.

Types of examinations: Final examination on the lecture part. Passing this exam is a pre-requisite for participation in the practical exercises.

Prerequisites for earning the credit points: Active participation in the practical demonstrated through a detailed record of experiments in the lab book and a written report.

For further information please check the Vorlesungsverzeichnis

Term: 2. + 3. Sem (SS and WS)

Credits: 5 CP

Module coordinator and lecturer(s): Dr. Thomas Fockenberg

Courses: 

a) Methods of rock analysis 

b) Practicals on rock analysis

Prerequisites: -

Learning outcomes:

After completion of the module the students

  • know methods to quantify the chemical content of solid materials.
  • can make qualified decisions about which analytical method is best suited for a given analytical problem.
  • are able to critically evaluate the results, to analyze possible sources of errors, and their influences on the results.

Content:

  • Lecture in methods of rock analysis: Fundamentals of electromagnetic rays and interaction with matter. Atomic-Absorption Spectroscopy (AAS), X-ray fluorescence spectroscopy (XRF), coulorometry, potentiometric methods, nuclear methods (e.g. RBS, NRA), general principles of mass spectrometry and different kinds of mass spectrometry, laser-ablation inductively coupled mass spectrometry (LA-ICP-MS), secondary ion mass spectroscopy (SIMS)
  • Sample preparation methods
  • Practicals on rock analysis: complete chemical analysis of a silicate rock will be carried out, and the errors and uncertainties in the results will be evaluated. 

Teaching methods: Lecture, practicals

Types of examination(s): Written exam of the contents of the lecture. A passed exam is a prerequisite for the attendance of the practical. Written report of the analyzed sample, determination of the P-T-condition of a metamorphic rock (computer program Perple X) or determination of the sample name and its geodynamic setting plus the crystallization history (computer programs GCD Kit and Pele).

Pre-requisites for earning the credit points: Passed written exam and passed report. The written exam is graded and determines the grade of the module. The report of the practical is not graded.

For further information please check the Vorlesungsverzeichnis

Term: Every winter semester

Credits: 5 CP

Module coordinator and lecturer(s): Dr. Stephan Schuth

Courses:

a) Methods of LA-ICPMS (Lecture, 2 SWS)

b) Practical course in LA-ICPMS (Practical course, 2 SWS as a block course of 4 days)

Prerequisites: The module is open to students with a BSc in Earth Sciences. Successful completion of the module "Analytical methods in rock analysis" is recommended.

Group size: Maximum of 8 students

Learning outcomes:

Upon successful completion of this module, the students

- have an in-depth understanding of the principles of laser ablation and inductively coupled plasma-mass spectrometry methods (SF-, TQ-, MC-ICPMS).

- are able to choose the best-suited method for a given geoscientific research question.

- can critically evaluate the results, calculate the analytical uncertainty, and identify possible sources of analytical problems.

Content:

a) Lecture in methods of LA-ICPMS:

1) Laser ablation: principles of laser radiation, analytical approaches (profile, spot, 3D analyses, mapping), interaction of the laser beam with solid matter, combination of LA-ICPMS and LIBS, split-line technique.

2) Mass spectrometry: principles of (Inductively Coupled Plasma-) Mass Spectrometry, advantages and drawbacks of different mass spectrometer designs (e.g., SF, TQ, MC; reaction cell, high- vs. low-resolution), data evaluation (incl. analytical uncertainty, counting statistics).

b) Practical course in LA-ICPMS:

The students learn the basics about handling and tuning of a modern laser ablation system connected to a state-of-the-art triple-quadrupole-ICP-mass spectrometer. Analyses target a large variety of solid materials like glasses, alloys (e.g. welding rods, coins), mineral phases (e.g., zircons, olivines, garnets, …), and samples from different ore deposits (e.g., hydrothermal settings). Age determinations of selected zircons (U-Pb ages) and/or garnets (Lu-Hf ages) are included, and calculation and evaluation of the age will be part of the practical course.  

This course is especially welcoming students who are interested in master projects that evolve around in-situ analyses of solid samples (e.g., glasses, minerals, alloys, small archaeological artefacts).

Types of courses: Lectures, practicals and project work in small teams

Types of examinations: Written exam on theoretical aspects of laser systems and mass spectrometers. Written practical report about the analytical procedure (and its challenges), and presentation and evaluation (including error calculations) of the results.

Requirements for the award of credit points: Attendance in the practical course and a passing grade for the written report.

Other information: Literature: Gill: Modern Analytical Geochemistry - Skoog & Leary: Instrumentelle Analytik - Sylvester: Laser ablation ICP-MS in the Earth Sciences - Thomas: Practical Guide to ICP-MS

 

For further information please check the Vorlesungsverzeichnis

Applied Geology

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Dr. Andrea Hachenberg

Courses:
a) Fissured rock hydrogeology, 2 SWS
b) Climate change and water resources, 2 SWS
 

Prerequisites: For students in MSc programs

Learning outcomes:

Upon completion of the module, students will be able to demonstrate insights into various aspects of applied hydrogeology and describe interrelationships. They

  • deepen their knowledge in the field of fractured groundwater significantly beyond the level of the basic lectures.
  • are able to characterize and evaluate globally important water resources with regard to occurrence, genesis, use and sustainable management.
  • assess the impact of climate change on water resources and their management.

Content:

a) Fissured rock hydrogeology

Basics, terms and methods of describing fractured aquifers including occurrence and exploration of bedrock aquifers (magmatic, metamorphic, sedimentary), qualitative and quantitative aspects of water use from fractured aquifers.

b) Climate change and water resources

Fundamentals and concepts of climate change and methods to study its influence on water management including collection, presentation and interpretation of climate data, climate models, political climate targets and approaches to their implementation; global, regional and local impact on quality and quantity of usable water resources; methods of climate adaptation.

Teaching methods: Lectures with accompanying exercises.

Mode of assessment: Written exam on the contents of the courses a), b); duration 120 minutes at the end of the WS.

Requirement for the award of credit points: Passed module examination; passed ungraded lecture in a); participation in, and submission of at least 70% of each of the exercises in b).

For further information please check the Vorlesungsverzeichnis

Term: 1. + 2. Sem.

Credits: 8 CP

Module coordinator and lecturer(s): Prof. Dr. Stefan Wohnlich

Courses:
a) Shallow geothermal energy, 2 SWS
b) Deep geothermal energy, 3 SWS

Prerequisites: For students in Master programs

Learning outcomes: After completion of the module, the participants will

  • be able to dimension simple planning examples for geothermal plants and to determine the necessary parameters.
  • understand various sub-areas of geothermal energy (shallow and deep geothermal energy) as well as the different types of geothermal systems (hydrothermal, petrothermal, open and closed systems).
  • understand the theoretical background and current calculation methods, know the legal principles and guidelines for the construction of geothermal plants and boreholes. The deep geothermal energy course deals with physical heat transfer processes at greater depths and the associated processes that are important for the optimal energy yield of such systems.

Content:
a) Shallow geothermal energy:
General insight into shallow geothermal energy: Overview of geothermal energy and energy in Germany, functioning of heat pumps, guidelines and legal bases, open and closed systems, dimensioning of geothermal probe systems, insight into seasonal heat reservoirs.

b) Deep geothermal energy:
Fundamentals and methods of deep geothermal energy: Potentials and uses in Germany and internationally, geophysical exploration and characterisation of deep geothermal reservoirs.

Teaching methods: Lectures with accompanying exercises.

Mode of assessment: Written examination on the contents of courses a) and b); duration: 120 minutes at the end of the summer semester.

Requirement for the award of credit points: Passed module examination; Participation in, and submission of at least 70 % of the exercises in a) and b)

For further information please check the Vorlesungsverzeichnis

Term: 1. + 2. Sem.

Credits: 12 CP

Module coordinator and lecturer(s): Dr. Thomas Heinze

Courses:
a) Introduction to groundwater hydraulics, 4 SWS
b) Hydraulic groundwater modelling, 4 SWS

Prerequisites: For students in Master programmes

Learning outcomes: At the end of the module, participants will

  • be able to describe and evaluate groundwater flow and conservative mass transport in the subsurface.
  • know methods of experimental investigation and determination of hydraulic parameters under different boundary conditions, and can derive and evaluate these mathematically.
  • be familiar with the evaluation and interpretation of groundwater hydraulic parameters and use them to deal with classical hydrogeological problems.
  • be able to use numerical modelling approaches to effectively model groundwater flow based on existing hydrogeological information.
  • be in the position to estimate and describe the quality and limitations of hydraulic models and use them to predict future situations.

Content:
a) Groundwater hydraulics:
- Methods for the collection and evaluation of hydraulic parameters (Darcy-tests, pump tests, Slug&Bail tests)
- Conveyance of knowledge about groundwater flow and the construction of groundwater level plans
- Execution and evaluation of pumping tests by means of graphical and analytical solutions
- Practical tasks for lowering the groundwater level through well systems in excavation pits or calculation of well yield

b) Hydraulic groundwater modelling:
- Teaching of knowledge and methods for understanding and evaluation of mass transport processes in    groundwater
- Methods for quantifying the subsurface (geostatistical approaches)
- Knowledge transfer for the modelling of mass transport with regard to the structure of a model, boundary conditions, advantages and disadvantages of models and how modelling programs work
- Visualization and interpretation of model results

Teaching methods: Lectures with accompanying calculation exercises; Software exercises (FeFlow) on the PC

Mode of assessment: Written examination on the contents of the courses ‚Groundwater hydraulics‘ and ‚Hydraulic groundwater modelling‘; Duration: 120 minutes.

Requirement for the award of credit points: Passed module examination.

For further information please check the Vorlesungsverzeichnis

Term: 3. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Licha (Lehrtransfer IEG)

Courses: Drilling 1; Exercises in drilling , 5 SWS

Prerequisites: For students in Master programmes

Registration for the course: The course is not in E-Campus, because it is a course form the IEG.
You register for the class in the class with a formular.

Learning outcomes:

The course presents an introduction to drilling technologies, focussing on shallow, near-surface applications like geothermal borehole heat exchangers, water and monitoring wells, geotechnical as well as environmental investigation. Dry, augering and mud drilling techniques will be compared and discussed, as well as sampling and coring for different applications.

  • Introduction to geotechnical investigations and selected standards.
  • Rotary drilling with direct circulation including tooling.
  • Rotary drilling with indirect circulation including tooling, applications, air lifting. 
  • Mud losses, artisean conditions while drilling, cementing. 
  • Water and monitoring wells, well testing, sampling. 
  • Shallow geothermal, borehole heat exchanger systems.
  • Environmental Direct Push sampling, coring, on-site analysis.

Content:

  • Basics of shallow drilling. 
  • Coring and cuttings. 
  • Geotechnical exploration, probing and analysis (DIN 4021 / EN ISO 22475).
  • Foundation work and drillling. 
  • Water well drilling and completion. 
  • Shallow geothermal drilling, completion and applications including standard W 120. 
  • Quality assurance and control of shallow geothermal BHE systems.
  • Teaching methods: Classroom and hands on lectures, field work on the rig and its auxiliary equipment, laboratory experiments, practical case studies.

Mode of assessment: Written examination (60 Min.)

Requirement for the award of credit points: According to current examination regulations.

For further information please check the Vorlesungsverzeichnis

Term: End of winter semester

Credits: 7 CP

Module coordinator and lecturer(s): Prof. Dr. S. Wohnlich (Modulbeauftragter), in cooperation with other lecturers of GMG.

Courses: Field Courses in applied geology in various hydrogeological settings (Europe, South America, etc.)

Prerequisites: For students in the Masters Programm "Geosciences" with the focus in Applied Geology, Sedimentology, Mineralogy, and Crystallography

Learning outcomes: The learning aims are dependent on the topics of the field course. The field courses combine aspects of applied Geology (Hydrogeology, Engineering Geology, Geothermal Energy, Economic Geology) with general geological knowledge like Structural Geology, Sedimentology, Geophysics etc. Generally, the aim is to give the students the possibility to combine knowledge from classes and laboratory exercises with field observation in order to construct a sound Geological Model, that can be applied to practical purposes like Mining, Engineering of Geothermal Applications. After the successful attendance of the module the students are able to understand the complexity of geological settings.

Content: Depends on the field area.

Teaching methods: Seminar before the field trip, discussions in the field, planning and independent work in the field.

Mode of assessment: The module is graded on the basis of the evaluation of the lecture and the report from the pre-seminar and the submitted sketches and reports. Participation in the fieldwork. The pro-seminar consists of a lecture on selected topics (10-15 minutes) and submission of an abstract of the talk (1-2 pages). Presentation of 4-5 sketches of the field settings (done in the field and refined in the evenings in the field camp). The original copy as well the refined copy are to be submitted.

Requirement for the award of credit points: Active participation in the field work, discussion and seminars. Inability to participate in more than 33% of the field days may be excused only on very well-founded medical
grounds; otherwise such absence will lead to a failing grade in the module.

 

Term: 2. Sem. (recurring every SS)

Credits: 12 CP

Module coordinator and lecturer(s): Dr. Thomas Heinze

Courses:

a) Hydrogeological field exercises
b) Analysis of measurement results (Seminar)

Prerequisites: Knowledge of groundwater hydraulics, pumping tests, solute transport in groundwater, aquifer systems, groundwater recharge or passing of the examination of “Introduction to Groundwater Hydraulics”. Basic knowledge in computer-based analysis using GIS, EXCEL, Python or Matlab.

Learning outcomes:

Upon completion of the module, students are able to

  • perform, evaluate, and interpret hydrogeological field tests independently.
  • conduct a wide variety of hydrogeological experiments.
  • apply the concept of tracers for the investigation of hydraulic conditions in the subsurface.
  • carry out a tracer experiment and evaluate and interpret the data collected in the process.
  • transfer their knowledge from the lecture hall to real-world problems.

Content:

(a) Hydrogeological field exercises

Performance of hydrogeologic field methods including pumping tests, seepage tests, discharge measurements, sampling and hydrochemical field laboratory, drilling and sediment retrieval, groundwater leveling plan preparation; basics, terms and methods of tracer hydrology including types and properties of tracers, solubility, sorption, planning and execution of tracer experiments: Input, sampling and measurements, recovery and interpretation of passage curves, derivation of hydraulic parameters, documentation, evaluation and ad-hoc interpretation of collected data.

(c) Analysis of measurement results (seminar)

Computer-based analysis of measurement results from the field exercises using GIS, EXCEL, MATLAB, and specialized software for the respective tasks: Analysis of pumping tests using curve matching to obtain aquifer properties & characterize aquifer; Curve matching of tracer passage curves to obtain transport properties; (Inverse) modeling of infiltration experiments to obtain infiltration capacity of the soil; GIS based catchment analysis and calculations of groundwater recharge.

Teaching methods: Lectures with accompanying calculation exercises and field exercises.

Mode of assessment: Grading of written reports and experiment analysis

Requirement for the award of credit points: Active participation in the field work, discussion, and seminars. Inability to participate in more than 2 field days may be excused only on very well-founded medical grounds; otherwise, such absence will lead to a failing grade in the module. Submission of a report covering the description of the field experiments, their results and an in-depth analysis according to the techniques covered in the course.

For further information please check the Vorlesungsverzeichnis

Term: 2. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Licha (Lehrtransfer von Fakultät Bauingenieurwesen)

Courses: Siedlungswasserwirtschaft, 3 SWS

Prerequisites: Für Studierende in Master-Programmen

Learning outcomes:

Studierende sind nach Beendigung des Moduls in der Lage,

  • Methoden, Zusammenhänge und Einflüsse im Bereich der Siedlungswasserwirtschaft zu beschreiben und zu bewerten.
  • kennen die grundlegenden hydrologischen Prozesse in natürlichen und anthropogenen Systemen und Ansätze zu deren Untersuchung.
  • kennen die komplexen Interaktionen des Menschen mit der Hydrosphäre.

Content: Grundlagen, Begriffe und Methoden der Siedlungswasserwirtschaft: natürliche hydrologische Systeme und deren Erkundung, anthropogene Nutzung von Wasserressourcen: Wassergewinnung, Wasseraufbereitung, Wasserspeicherung, Wasserförderung und –verteilung, Betriebswasser, Abwasser und Klärschlamm, Regenwasserbewirtschaftung, Flächenversiegelung.

Teaching methods: Vorlesungen mit begleitenden Übungen

Mode of assessment: Schriftliche Klausur über die Inhalte der Lehrveranstaltungen, Dauer 90 Minuten am Ende des SS.

Requirement for the award of credit points: bestandene Modulprüfung; Teilnahme an, und Abgabe von jeweils mindestens 70 % der Übungen.

 

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Dr. Andrea Hachenberg

Courses:

a) Isotope hydrogeochemistry (lecture), 2 SWS

b) Isotope hydrogeochemistry (exercise), 2 SWS

Prerequisites: For students in Master programs

Learning outcomes: Upon completion of the module, students will be able to grasp the importance of isotope ratios for the study of the origin of water and dissolved constituents in the hydrological cycle. They are familiar with a wide range of relevant isotope systems that are widely used in the fields of hydrogeochemistry and environmental geosciences for a wide variety of problems. They participants can use radiogenic isotopes for dating, determination of residence times, flow path of water, as tracer and for designation of origin. Stabile isotopes will be used as geothermometer, for determination of origin of water, elements, gases and pollutants, redox reactions and process determination. You will get familiar with analytical methods for sampling and determining of isotope data, and be able to process and evaluate them. The lecture is complemented by course-related exercises based on real case studies.

Content:

a) Isotope hydrogeochemistry (lecture): Basics, terms and methods of isotope hydrogeochemistry including stable, radioactive and radiogenic isotopes, relevant isotope systems and ratios, fractionation processes, their applications and analytical methods, possibilities of interpretation in hydrogeological and hydrogeochemical questions.

b) Isotope hydrogeochemistry (exercise): Application of theoretical background in guided exercises on real case studies.

Teaching methods: Lectures with accompanying exercises.

Mode of assessment: Written exam on the contents of the courses a) and b); duration 120 minutes. Evaluation of the exercises.

Requirement for the award of credit points: Passed written module exam; Participation in, and submission of at least 70% of the exercises.

For further information please check the  Vorlesungsverzeichnis

Term: 3. Sem.

Credits: 9 CP

Module coordinator and lecturer(s): Dr. Andrea Hachenberg

Courses: 

a) Environmental forensics

b) Hydrogeochemical modelling

Pre-requisites: Registered in Master programs

Learning outcomes: 

(a) Anthropogenic use of groundwater is often associated with a contamination of the same. It is becoming increasingly relevant to identify the polluters of such contamination. For this purpose, the emerging field of environmental forensics offers some methodological possibilities, which the participants will learn to know and apply. Further, the students will learn about the recent development of reactive tracers for geothermal applications but also for studying subsurface processes. The participants will learn, which tracers are useful for which problem by means of examples.

(b) Hydrogeochemical modeling allows the students to gain a deeper understanding of the hydrogeochemical processes discussed and how to represent them in model form. They understand the added value of numerical equilibrium modeling for hydrochemical data, and can describe, evaluate, and predict the effects of different frameworks on solute distribution.

Contents: 

a) Environmental forensics

Basics, terms and methods of environmental forensics including polluter pays principle and legal basis, hydrochemical proxies and indicators, possibilities of using reactive tracers, international and national case studies.

b) Hydrogeochemical modelling

Basics, terms and methods of hydrogeochemical modeling including models and databases, simulation of hydrochemical equilibrium reactions, mixing reactions, kinetically controlled reactions, inverse modeling, 1D reactive solute transport and isotopic fractionation,  graphical presentation of the results with various programs.

Teaching methods: Lectures with accompanying exercises, software exercises (PhreeqC) on the PC.

Mode of assessment: Written exam on the contents of the courses a) and b); duration 120 minutes. Evaluation of the exercises during the course in b and a final project in b.

Requirement for the award of credit points: Passed written module exam. Participation in, and submission of at least 70% of each of the exercises and the final project in b. 

For further information please check the Vorlesungsverzeichnis

Term: 1. Sem.

Credits: 12 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Licha

Courses:
a) Inorganic hydrochemistry, 4 SWS
b) Organic hydrochemistry, 4 SWS

Prerequisites: For students in Master programs

Learning outcomes: At the end of the module, participants will

  • understand the role of chemical processes in water-rock interactions. The fundamentals of thermodynamics enable them to recognize and evaluate hydrogeochemical equilibrium and imbalance states of different reaction types
  • understand the hydrogeochemical basics, terms and methods
  • be able to classify organic substances and pollutants in the subsurface
  • know the relevant structures and properties, and thus understand their behaviour and mobility of contaminants in the environment.

Content:
a) Inorganic hydrochemistry:
Fundamentals, concepts and methods of inorganic hydrochemistry: law of mass action, concentration and activity, solubility and saturation, types of hydrochemical reactions, equilibrium and imbalance, sorption, toxicity and regulatory provisions

b) Organic hydrochemistry:
Fundamentals, concepts and methods of organic hydrochemistry: classes of substances, structures and properties of organic substances, phase formation, volatility, degradation, solubility, sources and legal regulations, cases of contamination and approaches of remediation

Teaching methods: Lectures with accompanying calculation exercises

Mode of assessment: Written examination on the contents of a) and b); duration: 120 minutes at the end of the winter semester.

Requirement for the award of credit points: Passed module examination; Participation in, and submission of at least 70 % of the exercises in each a) an b)

For further information please check the Vorlesungsverzeichnis

Term: 2. Sem

Credits: 10 CP

Module coordinator and lecturer(s): Dr. Wiebke Warner, Dr. Thomas Heinze

Courses:
a) Scientific soft skills
b) Project work

Prerequisites: For students in Master programs

Learning outcomes:
At the end of the module, participants will know how to

  • formulate a scientific research question, derive a hypothesis as well as identify necessary tasks to address the raised question.
  • obtain, manage, and organize scientific data.
  • find and organize relevant literature and how to extract core statements quickly.
  • extract and summarize relevant information from data.
  • structure, write and formulate a concise scientific report.
  • orally present scientific results and how to participate in a scientific discussion.

Content:
a) Scientific soft skills

Writing of reports, oral presentations, data management and data analysis, literature search and bibliography management, strategies for scientific project management.

b) Project work
Conduction of a small research project to a self-selected or provided topic in the field of hydrogeology or hydrogeochemistry or in the field of work of a responsible supervisor in the department. Projects can involve field and/or laboratory work, mathematical/numerical modeling or be based on a literature study. In the research project module, the contents of the accompanying seminar of this module should be applied.

Teaching methods: Seminar with accompanying practical applications using software. Application of the theoretical content within a small research project.

Mode of assessment: Written report of max. 20 pages and an oral presentation.

Requirements for the award of credit points: Passed module examination

For further information please check the Vorlesungsverzeichnis

 

 

 

 

Term: 3. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Dr. Wiebke Warner

Courses:
a) Basics in instrumental environmental analysis (Lecture)
b) Environmental sampling and analysis (Lab course)

Prerequisites: Students enrolled in a Geoscience Master program and related MSc programs.

Learning outcomes: 
After successful completion of the module, students will

  • gain a thorough understanding in instrumental methodologies, monitoring strategies to obtain meaningful data in anthropogenically influenced geosystems
  • will be able to transfer theoretical knowledge in instrumental environmental analysis to plan sampling campaigns and analysis
  • obtain a general understanding of the complexity of environmental problems
  • raising awareness for contamination sampling procedures  during field and lab analysis
  • be able to select appropriate analytical methods according to the research question or environmental problem and are able to interpret environmental data

Content:
a) Basics in Instrumental Environmental Analysis

  • Typical problems and questions in environmental forensics and lab methods to answer them.
  • Successful sampling strategies, storage and sample preparation.
  • Analytical methods in environmental forensics: in-field parameters, single compound analysis, sum parameter analysis, mass-spectrometry and chromatography and future developments.
  • Quality assurance, such as calibration, standards etc. and limitations of analytical methods
  • Data handling, quantitation, interpretation and presentation.
  • Understanding scientific publication and transfer to lab.

b) Environmental Sampling and Analysis
Handling of three environmental samples, from sampling to analysis and data interpretation.

Types of courses: Lectures, lab practical and project work in small groups

Types of examination:

  • 5-10 min presentation of a scientific publication regarding an analytical topic (no grade)
  • Three lab reports, which are the prerequisite for attending the written exam
  • Written exam (60 mins)

Requirements for the award of credit pointsPassing grade for the final exam

For further information please check the Vorlesungsverzeichnis

 

Engineering Geology and Rock Mechanics

Term: 1. Sem.

Credits: 6  CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers

Courses: 
a) Grundlagen der Ingenieurgeologie
b) Darstellen und Analysieren geotechnischer Informationen

Learning outcomes:
Die Ingenieurgeologie ist eine interdisziplinäre Wissenschaft, welche den Baugrund erkundet und aus den Erkenntnissen ein geotechnisches Modell für bautechnische Zwecke erstellt. Die Erkundung des Baugrundes sollte hierbei immer unter Berücksichtigung der lokalen Geologie und deren Genese sowie der geodynamischen Prozesse erfolgen, um die Unsicherheiten des Models zu minimieren. Im Rahmen des Kurses werden die grundlegenden Verfahrenschritte der Erkundung und die normative Basis erläutert. Darüber hinaus wird phänomenologisch-deskriptiv ein Gefühl für das Verhalten von Festgestein, Fels und Lockergestein unter den typischen bautechnischen und geologisch-bedingten Belastungssituationen vermittelt. Aus dem Verständnis des rheologischen Verhaltens werden Parameter abgeleitet, welche den Baugrund charakterisieren. Die Darstellung von ingenieurgeologischen und geotechnischen Informationen bildet die Grundlage einer jeden Ergebnispräsentation; umgekehrt muss der/die Ingenieurgeolog:in in der Lage sein graphisch dargestellte technische und geotechnische Informationen zu erfassen und zu analysieren. Nach erfolgreichem Abschluss des Moduls (a) sind die Teilnehmerinnen und Teilnehmer mit der ingenieurgeologischen Fachterminologie zur fachgerechten Beschreibung und Benennung von Lockergestein, Festgestein und Fels vertraut, (b) verstehen sie die Zusammenhänge zwischen geologischen Verhältnissen, physikalischen, hydraulischen und mechanischen Eigenschaften von Boden und Fels, (c) kennen die Teilnehmerinnen und Teilnehmer die wichtigsten Parameter zur Beschreibung der Eigenschaften von Locker- und Festgesteinen und (d) sind sie mit den Grundlagen der Normung und Richtlinien vertraut. Darüber hinaus sind die Teilnehmerinnen und Teilnehmer mit den grundlegenden Methoden der Darstellung und Analyse geotechnischer Informationen vertraut. Dies umfasst das Erfassen markscheiderischer und technischer Darstellungen, das zeichnerische Darstellen von Aufschlüssen und Aufschlussdaten, das geometrisch-technisch-zeichnerische Darstellen von Ergebnissen, die Darstellung und Analyse von Festigkeits- und Gefügedaten, sowie das Verfassen von Berichten.

Content
• Definition der Ingenieurgeologie; normativer Rahmen des Bauwesens inkl. EC 7; Ablauf einer Baugrunderkundung; Einordnung der Ingenieurgeologie in UN SDGs; Einführung des Homogenbereichskonzeptes; Definition Gestein, Fels, Lockergestein, Boden inkl. Boden und Fels als Mehrphasenmodell; Übersicht über Aufschlussverfahren; Benennen und Beschreiben von Locker- und Festgesteinen sowie Trennflächen und Fels; Einführung in Stoffmodelle für Trennflächen, Gestein und Boden; Hydrogeologie im Geoingenieurwesen; Spannungen im Untergrund aus Auflast und resultierende Spannungen und Setzungen unter Bauwerken; Klassifizieren und Bewerten von Boden und Fels für bautechnische Zwecke; Einführung in grundlegende Belastungsszenarien und Bemessungsansätze.
• Konstruktion geologischer Schnitte; zeichnerische Darstellung geologischer Informationen in Form von Verwitterungsprofilen, Aufschlusszeichnungen und Abwicklungen; Bohrprofile; Operationen in der stereographischen Projektion; Spannungsdarstellung und -analyse mittels Mohr’schem Spannungskreis; Lesen und Analysieren technischer Darstellungen; Graphen und Tabellen; Risswerke; geotechnisches Berichtswesen.

Teaching methods: Vorlesung mit integrierten Übungen Vorlesung, Übung

Mode of assessment: Grundlagen des Geoingenieurwesens Geosciences, MSc 43 Modulklausur

Requirement for the award of credit points Übungsaufgaben (Testate), benotete Übungsaufgaben, Modulprüfung Grundlagen des Geoingenieurwesens

For further information please check the Vorlesungsverzeichnis

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers, Dr. Mandy Duda; Daniel Bücken

Courses:

a) Stress Field and Rock Mass behaviour  (2SWS)
b) Stress Field Modelling and Simulation (0,5 SWS)
c) Geological Engineering Research Project (2SWS)

Prerequisites: -

Learning outcomes:

Stresses in the Earth's crust are the driving 'force' of many processes and a definitive quantity of assessing the stability of geologic structures such as interfaces or faults. In addition knowledge of the stresses at work is of extraordinary importance in the design of structures in the near-surface and deep subsurface is of extraordinary importance. The English language course develops the mechanical principles for the representation of the stress field in the earth's crust and discusses the sources of stress. Methods for estimating and measuring stresses are introduced.

This includes modeling of the primary field (green and brown field) and the derivation of secondary stresses by civil engineering structural engineering measures.

The simulation of the alteration of the in-situ stresses is in many rock and mining projects and mining projects to estimate the secondary stresses and the load on the geological structures and geological structures as well as civil engineering works. In addition to the lecture Stress Field and Rock Mass behaviour, exemplary models are created autodidactically using standard software of rock are created autodidactically and the resulting stresses and their distribution are simulated.

The rule is to work in teams; depending on the industry, these teams are composed internationally, depending on the industry. The English-language course takes this into account. Within the framework of a (partly) English-language project work, cooperation is practiced under real-life conditions. At the end of the collaborative work, which focuses not only on the actual the actual shared development of the database as well as the coordination of the work and the coordination of the work, a technical-scientific publication will be drafted, which will be submitted to a professional publication, which will be submitted to a scientific journal if the quality is good enough.

The students are familiar with rock and rock mass behavior and the sources of stress in the earth's crust. They know how to estimate and measure rock mass stress. In addition, the enrolled students are familiar with the determination of stress alterations and redistributions by anthropogenic sources.

The students are familiar with the numerical simulation of stress alterations due to geological or constructional features using a commercial software package.

After the successful completion of the project, the students can plan, organize, conduct, and document a confined geological engineering research project. The projects always include an aspect of compliance with the UN SDG's.

Content: Definition of stress, rock deformation, rock failure, rock mass definition, sources of stress in the earth crust, methods of stress measurement and stress modelling, determination of stress alterations and stress redistribution.

Teaching methods: Lectures with exercises, self-educational homework Seminar, practical work and drafting a manuscript

Mode of assessment: Oral exam at the end of the term

For further information please check the Vorlesungsverzeichnis

Term: 2. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Dr. Mandy Duda

Courses:

a) Rock Mass Mechanics (Felsmechanik)

b) Rock Engineering (Felsbau)

Prerequisites: Module ‘Rock Mass Stress Fields’ recommended for specialisation ‚Geoingenieurwesen‘, mandatory for specialisation in ‚Geological Engineering for Subsurface Energy Systems’

Learning outcomes:

Als Teilgebiet der Geomechanik beschäftigt sich die Felsmechanik mit der Beschreibung der rheologischen Eigenschaften und assoziierten Stoffmodelle von Gestein und Trennflächen; durch die Integration kann das Deformationsverhalten von Fels (= Gestein + Trennflächen) durch eine Änderung der thermischen, hydraulischen oder mechanischen Randbedingungen abgeschätzt werden. Das Verständnis des mechanisch-hydraulisch-thermischen Verhaltens des Fels (vielfach auch als Gebirge bezeichnet) bildet die Grundlage für die bautechnische oder werkstoffliche Nutzung des Fels oder Gesteins.

Der Felsbau beschäftigt sich mit den bautechnischen Maßnahmen im Fels; die Nachbardisziplin Erd-/Grundbau beschreibt die Methoden in Lockermaterialien. Die bautechnischen Maßnahmen umfassen das Lösen, das Sichern und die Gewinnung von Gestein, die Gründung im Fels und die Erstellung von Hohlräumen. Aufbauend auf den felsmechanischen Grundlagen werden die Prinzipien des Felsbaus besprochen.

Die Simulation der Interaktion von Bauwerk und Baugrund hat zum Ziel, die Belastungen aus dem Bauwerk und die Reaktion des Baugrunds bei komplexen felsbaulichen Projekten umfassend beurteilen zu können. In Ergänzung zu den Vorlesungen Felsmechanik und Felsbau werden unter Verwendung einer Standardsoftware des Felsbaus beispielhafte Modelle autodidaktisch erstellt und die resultierenden Belastungen des Baugrunds simuliert und beurteilt.

Die Teilnehmerinnen und Teilnehmer sind mit den Grundlagen der Rheologie der Gesteine, dem mechanischen Verhalten von Gestein und Trennflächen, Gebirgsklassifikationen und mechanischen Eigenschaften des Gebirges vertraut und kennen die typischen Kennwerte nach Bedeutung und Größe. Darüber hinaus sind die geomechanischen Grundlagen und Zusammenhänge vertieft. Die Teilnehmerinnen und Teilnehmer sind mit den Grundlagen der Erstellung und Sicherung von Felsbauwerken vertraut. Die Teilnehmerinnen und Teilnehmer sind mit der Anwendung einer Standartsoftware des Felsbaus vertraut und können für einfache felsbauliche Fragestellungen numerische Modelle erstellen und die Auswirkung der Bauwerkserstellung auf den Baugrund beurteilen.

Content: Deformation und Versagen von Gestein; Einführung in die Versuchstechnik; Deformation und Versagen von Trennflächen; Gebirgsklassifikationen; Deformation und Versagen von Fels; Charakteristika von Tunneln, Stollen und Felskavernen; Prinzipien des Hohlraumbaus; Gründungen auf Fels und Böschungen aus Fels; Aufgabenstellungen und Messgrößen bei der geotechnisch/geomechanischen Überwachung; felsmechanische numerische Simulation.

Teaching methods: Vorlesung, Übungen,

Mode of assessment: Modulklausur

Requirement for the award of credit points: Übungsaufgaben

For further information please check the Vorlesungsverzeichnis

Term: 1. + 2. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers, Prof. Dr.-Ing. Torsten Wichtmann

Courses:

a) Grundbau (3 SWS)
b) Bodenmechanik (3 SWS)
c) Geotechnische Herausforderungen des Anthropozäns (0,5 SWS)

Prerequisites: Modul Grundlagen des Geoingenieurwesens

Learning outcomes:

Die Inhalte von a) und b) sind den Beschreibungen des VLV der Bauingenieure zu entnehmen.

c) Das jüngste Antropozän zeichnet sich durch u.a. massive Veränderungen der Geländemorphologie durch den Menschen, den Wandel des Klimas und damit verbundene extreme Wetterereignisse, die Notwendigkeit der Endlagerung radioaktiver Abfälle oder die Notwendigkeit der massiven Erneuerung der Energieversorgung aus. Dies bedingt auch geotechnische Lösungen. Im Rahmen des Kurses erstellen die Kursteilnehmerinnen und -teilnehmer zu einem Thema ein Diskussionspapier, in dem Sie die Herausforderungen, die sich auch geologisch-geotechnischer Sicht ergeben, definieren und versuchen realistisch/kreative Lösungsansätze unter Berücksichtigung der vorhandenen Literatur zu dem Thema zu skizzieren. In einem Impulsvortrag stellen Sie das Thema und Ihre Thesen vor und stellen den Bezug zu den UN SDGs her. Die Diskussionsergebnisse und Hinweise zum Impulsvortrag reflektieren Sie in Ihrem Diskussionspapier.

Nach erfolgreichem Abschluss des Kurses sind die Teilnehmenden mit den grundlegenden Methoden der Beschreibung von Böden vertraut, wissen um das grundlegende Verhalten von Böden und dessen mathematisch idealisierte Beschreibung, besitzen die Fähigkeit, diese Konzepte auf die Bemessung von Grundbauwerken anzuwenden und haben das Verständnis Berechnungsergebnisse kritisch zu hinterfragen.

Die Teilnehmerinnen und Teilnehmer sind mit den UN SDGs vertraut und üben die Auseinandersetzung mit einem gesellschaftlich relevanten, technischen Thema, welches geotechnische Lösungen verlangt. Durch den Impulsvortrag stärken die Teilnehmenden Ihre Präsenations- und Diskussionskompetenz

Content: Beschreibung und Klassifizierung von Böden, Bodeneigenschaften und -kenngrößen, Baugrunderkundung, Wirkungen von Grundwasser im Boden, Spannungsausbreitung im Baugrund, Setzungs- und Konsolidierungsberechnungen im Boden, Scherfestigkeit, Erddruck auf Wände und Stützmauern, Standsicherheit von Böschungen, Flachgründungen, Stützkonstruktionen, Grundwasserhaltungen, Baugruben, Pfahlgründungen, Baugrundverbesserung; Erstellung eines Diskussionspapiers; Impulsvortrag; Diskussion

Teaching methods: Vorlesung, Übung, Seminar

Mode of assessment: Klausur, Diskussionspapier

Requirement for the award of credit points: Bestandene Klausur, benotetes Diskussionspapier

For further information please check the Vorlesungsverzeichnis

Term: 2. + 3. Semester

Credits:  5 CP

Module coordinator and lecturer: Prof. Dr. Tobias Backers

Courses

a) Rock Mass Mapping

b) Rock Mass lab

Prerequisites: Modul Grundlagen der Ingenieurgeologie, Modul Baugrunderkundung und Dokumentation; Modul Felsmechanik und Felsbau.

Learning outcomes:

Im Rahmen der Baugrundmodellerstellung sind das Gestein und Trennflächen durch gesteins- bzw. felsmechanische Laborversuche zu charakterisieren. Der Kurs vermittelt die grundsätzlichen Arbeitsmethoden der gesteins- bzw. felsmechanischen Laborarbeit. Darüber hinaus werden eine Reihe von Standardversuchen vorgestellt, durchgeführt, ausgewertet und die Kennwerte eingeordnet.

Für felsbauliche Projekte ist die Darstellung und Erhebung von felsmechanischen Kennwerten (hier insbesondere Gesteinseigenschaften, Trennflächengefüge und -charakteristika) von besonderer Bedeutung. Im Rahmen der Geländeübung wird die Aufnahme von Gesteins- und Gefügecharakteristika im Gelände erlernt. Einen besonderen Stellenwert nimmt hier die zeichnerische Darstellung des Aufschlusses und die graphische Dokumentation von Messdaten ein. Die erhobenen und ausgewerteten Daten werden graphisch als integrierte DIN A3 Darstellung zusammengefasst und durch einen zweiseitigen Kurzbericht eingeordnet.

Die Teilnehmerinnen und Teilnehmer erlernen die methodischen Grundlagen der Bestimmung von Gesteins- und Trennflächenparameter. Darüber hinaus sind sie mit der prinzipiellen Durchführung und Auswertung wesentlicher Laborversuche vertraut. Weiterhin wird das dazugehörige normative Berichtswesen geübt.

Die Teilnehmerinnen und Teilnehmer erlernen die Methoden der ingenieurgeologischen Felskartierung. Hierzu gehören die Ansprache der Gesteine im Aufschluss, das Einmessen von Flächen, die Beschreibung der Trennflächen und deren Charakteristika. Die Methodik der Auswertung und Darstellung der im Gelände aufgenommenen Messwerte wird geübt. Die Anwendung einer Gebirgsklassifikation wird gefestigt.

Inhalt: Grundlagen der Erhebung gesteins- und felsmechanischer Kennwerte; Durchführung und Auswertung von Standardversuchen; ingenieurgeologisch-felsmechanische Aufnahme und Beschreibung des Trennflächengefüges; Gesteinsansprache; zeichnerische Darstellung eines Aufschlusses; Scanlinemethodik; Bestimmung von Gesteins- und Trennflächenfestigkeiten im Feld; regionalgeologische Aspekte des Harz und nördlichen Vorharzes.

Teaching methods: Laborpraktikum, Geländeübung

Mode of assessment: Berichte

Requirement for the award of credit points: Berichte

For further information please check the Vorlesungsverzeichnis

Term: 2. + 3. Sem.

Credits: 5 CP

Modul coordinator an lecturer: Prof. Dr. Tobias Backers, Linus Eickhoff

Courses
a) Bodenmechanisches und -hydraulisches Laborpraktikum
b) Lockergesteinskartierung und hydrogeologisches Feldpraktikum

Prerequisites: Modul Grundlagen der Ingenieurgeologie, Modul Baugrunderkundung und Dokumentation

Learning outcomes:
Im Rahmen der Baugrundmodellerstellung ist das Lockergestein durch bodenmechanische Laborversuche zu charakterisieren. Der Kurs vermittelt die grundsätzlichen Arbeitsmethoden der bodenmechanischen Laborarbeit. Darüber hinaus werden eine Reihe von Standardversuchen vorgestellt, durchgeführt, ausgewertet und die Kennwerte eingeordnet. Der Baugrunderkundung und -modellierung kommt in bautechnischen Projekten eine grundlegende Bedeutung zu. Es sind die wesentlichen Kennwerte zu bestimmen und ein Untergrundmodell zu erstellen. Im Rahmen der Geländeübung werden eine Reihe von Erkundungsbohrungen geteuft, der erbohrte Lockergesteinsbaugrund angesprochen und ein Untergrundmodell (Profilschnitt) erstellt. Darüber hinaus wird die Grundwassersituation dokumentiert und Proben für eine weitergehende Charakterisierung des Baugrunds genommen. Die Teilnehmerinnen und Teilnehmer erlernen die methodischen Grundlagen der Bestimmung von bodenmechanischen Parametern. Darüber hinaus sind sie mit der prinzipiellen Durchführung und Auswertung wesentlicher Laborversuche vertraut. Weiterhin wird das dazugehörige normative Berichtswesen geübt. Die Teilnehmerinnen und Teilnehmer erlernen die Baugrunderkundeung mittels leichtem und mittelschwerem Bohrgerät (u.a. Bohrstock, Schlitzsonde, Carl Hamm Argos), sind mit den Bohrwerkzeugen vertraut und kennen die Vor- und Nachteile bei der Probengewinnung, können Lockergestein normgerecht ansprechen und Proben nehmen. Darüber hinaus sind die Teilnehmerinnen und Teilnehmer mit der Darstellung der Ergebnisse als Profilschnitt mithilfe einer Standardsoftware vertraut.

Inhalt:
Grundlagen der Erhebung bodenmechanischer Kennwerte; Durchführung und Auswertung von Standardversuchen; Durchführung einer Baugrunderkundung in Lockergestein; Kenntnis der verfahrenstechnischen Schritte einer Erkundungsbohrung; Lockergesteinsansprache; Probennahme; Profilerstellung mittels Standardsoftware.

Teaching methods: Laborpraktikum, Geländeübung

Mode of assessment: Berichte

Requirement for the award of credit points: Berichte

For further information please check the  Vorlesungsverzeichnis

 

Term: 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers

Courses:
a) Geomechanik und Geotechnik komplexer Systeme
b) Geomechanische numerische Simulation
c) Geotechnisches Projekt

Prerequisites: Modul Grundlagen der Ingenieurgeologie, Modul Baugrunderkundung und Dokumentation; Modul Felsmechanik und Felsbau

Learning outcomes :

Geomechanik ist eine integrative Disziplin, welche das mechanische Verhalten des geologischen Untergrundes bei Änderungen von Spannungen, Verschiebungen, Porendruck, der Temperatur oder weiterer Randbedingungen quantifizierend beschreibt. Unter Geotechnik versteht man Methoden der bautechnischen Nutzbarmachung des Untergrundes, d.h. des Baugrundes. Für eine umfassende und nachhaltige Herangehensweise ist es dabei notwendig Kenntnisse der Geologie, Bodenmechanik, Felsmechanik, Gesteinsphysik und verschiedener bau- und verfahrenstechnischer Disziplinen integrativ anzuwenden.

Im Rahmen des Kurses werden anhand von Anwendungsfeldern die einzelnen erlernten Kompetenzen des Curriculums zusammengeführt, um ein Verständnis für die notwendigen Maßnahmen zur Beschreibung des Untergrundes und das geoingenieurmäßige Herangehen an die Themenfelder zu generieren. Hierbei wird der Fokus auf die Diskussion geologisch oder bautechnisch komplexer Systeme gelegt.

Die Bearbeitung von Projekten in der späteren Berufspraxis setzt im Allgemeinen die Zusammenarbeit in Teams voraus; dies bedingt sich häufig aus der Komplexität der Aufgaben. Im Rahmen des geotechnischen Projektes wird in Kleingruppen eine Fragestellung bearbeitet, welche sich an reale Daten und Fragestellungen anlehnt. Hierbei werden die Kursteilnehmer im Format eines Planspiels eine Firma gründen, sich um den Auftrag zur Bearbeitung einer Fragestellung bewerben und hierbei grundlegende Kenntnisse im Bereich der Unternehmensformen und Preisgestaltung autodidaktisch erlernen. Nach Erteilung des Auftrages erarbeiten die ‚Firmen‘ eine Lösung unter Anwendung und auch Intensivierung des im Rahmen des Curriculums des Geoingenieurwesens erlernten Kompetenzen. Die individuellen Stärken und Kompetenzen der ‚Firmenangehörigen‘ werden sich hierbei ergänzen, zu optimierten Lösungen führen und den anderen Teilnehmenden neue Aspekte aufzeigen.

Zwischenergebnisse werden dem ‚Auftraggeber‘ vorgestellt; hier erhalten die Kursteilnehmer Feedback und profilieren ihre Präsentations- und Diskussionsfähigkeiten. Am Ende des Kurses steht eine Gesamtpräsentation der erarbeiteten Lösung und die Übergabe des Berichtes an den ‚Auftraggeber‘.

Die Teilnehmerinnen und Teilnehmer sind in der Lage die Komplexität von geologischen, bzw geotechnischen Systemen zu erfassen und zu analysieren. Dabei wird die Kompetenz zur Identifikation der einzelnen geomechanischen Fragestellungen in komplexen Problemen profiliert, um die kritischen systemisch relevanten Randbedingungen zu isolieren. Darüber hinaus sind die Teilnehmerinnen und Teilnehmer mit den typischen Charakteristika von typischen Projekten vertraut.

Die Teilnehmerinnen und Teilnehmer intensivieren ihre Präsentations- und Diskussionskompetenz. Durch die Gruppenarbeit wird die Teamfähigkeit gestärkt. Die intensive Beschäftigung mit einer komplexen Fragestellung wird ein tiefergehendes Verständnis der geologischen und bautechnischen Zusammenhänge generiert und dies trainiert die Berücksichtigung ingenieurgeologischer Aspekte zur Problemlösung

Content: Erkundungsanforderungen, Fragestellungen, Verfahrenstechnik und Bautechnik im u.a. Bereich des Tunnelbaus, der Erstellung von Tiefbohrungen, Entwicklung von tieferngeothermischen Reservoiren oder des Talsperrenbaus; Erarbeitung eines geotechnischen Berichtes; Teamarbeit; Anwendung der erlernten Grundlagen des Studiums des Geoingenieurwesens.

Teaching methods: Vorlesung mit integrierten Übungen, Projekt

Mode of assessment: Modulprüfung, Bericht

Requirement for the award of credit points: Bericht, Präsentationen

For further information please check the Vorlesungsverzeichnis

 

 

 

Term: 2. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers

Courses:
a) Baugrunderkundung und -modellierung
b) Messtechnik

Prerequisites: Modul Grundlagen der Ingenieurgeologie

Learning outcomes:
Eine der Hauptaufgaben der klassischen Ingenieurgeologie ist die Erstellung des geotechnischen Baugrundmodells, welche die Basis für die weiteren fachplanerischen Maßnahmen darstellt. Die Modellbildung erfolgt hierbei auf Grundlage der geologisch-geotechnischen, also ingenieurgeologischen Erkundung. Im Rahmen des Kurses werden die Methoden der Baugrunderkundung und die Parametererhebung zur Charakterisierung des Baugrunds vorgestellt und diskutiert; dies umfasst die Charakterisierung des Gesteins, Fels, Bodens und Grundwassers. Hierauf aufbauend wird die Homogenisierung der Baugrundeigenschaften vor dem Hintergrund der gewerkespezifischen Homogenbereichsausweisung erläutert. Die Erstellung einfacher Baugrundmodelle mittels geotechnischer Standardsoftware wird praktiziert.

Die Teilnehmerinnen und Teilnehmer kennen die wesentlichen Methoden der Baugrunderkundung und die Parameter sowie deren Bestimmung zur Beschreibung des Baugrunds. Darüber hinaus wird das Verständnis des Homogenbereichskonzeptes intensiviert. Die Teilnehmerinnen und Teilnehmer sind mit der Anwendung einer Standardsoftware zur Erstellung eines Baugrundmodells vertraut.

Content: Baugrunderkundungsmethoden; Parameter von Gestein, Fels und Boden; Homogenbereiche; Baugrundmodellierung

Teaching methods: Vorlesung, Übungen, Numeriklabor

Mode of assessment: Modulklausur

Requirement for the award of credit points: Übungsaufgaben

For further information please check the Vorlesungsverzeichnis

Crystallography

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. J. Schreuer

Courses:

a) Kristallchemie (Vorlesung und Übung)

b) Realstrukturbau und Phasenumwandlungen (Vorlesung und Übung)

c) Edelsteinkunde (Vorlesung)

Prerequisites:

Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.

Textual: Kenntnisse über Aufbau und Symmetrieeigenschaften von Kristallen sowie Kenntnisse in der allgemeinen und anorganischen Chemie werden vorausgesetzt.

Preparation:

Learning outcomes:

Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Prinzipien, die zur Ausbildung einer spezifischen Kristallstruktur führen.
  • kennen Studierende strukturelle Grundtypen sowie wichtige Strukturfamilien und deren Eigenschaften.
  • können die Studierenden strukturelle Instabilitäten erkennen und daraus resultierende Phasenumwandlungen klassifizieren.
  • sind die Studierenden in der Lage, die Auswirkungen von Phasenumwandlungen auf physikalische Eigenschaften von Kristallen und deren mögliche Anwendungen abzuschätzen.
  • kennen Studierende die wichtigsten Kristallarten, die als Edelsteine gehandelt werden, können diese identifizieren und grundlegend gemmologisch bewerten.

Content:

 

  • Atombau, Quantenzahlen.
  • Chemische Bindungen, Hybridisierung, Paulingsche Regeln.
  • Gitterenergie, Packungsmuster in Kristallen, Bindungsvalenzen, Strukturformeln.
  • Kristallfeldtheorie, Magnetismus.
  • Beschreibung und Darstellung von Kristallstrukturen.
  • Strukturelle Grundtypen, Spinelle, Perowskite, Silikate.
  • Komplexe Kristallstrukturen (Zeolithe, Schichtsilikate), Kristallchemie von H2O.
  • Klassifikation von Gitterdefekten.
  • Fremdatome, thermische Punktdefekte, Diffusion.
  • Versetzungen, Plastizität.
  • Flächendefekte, Stapelfehler, Zwillinge, Formgedächtniseffekte.
  • Klassifikationen von Phasenumwandlungen.
  • Grundzüge der Landau-Theorie, kritische Phänomene.
  • Atomistische Ursachen struktureller Instabilitäten, Auswirkung auf physikalische Eigenschaften.
  • Natürliche und synthetische Edelsteine (Entstehung, Vorkommen bzw. Züchtung).
  • Kriterien zur Identifizierung und Bewertung von Edelsteinen.
  • Optische Eigenschaften von Edelsteinen (Farbe, Brechungsindex, Dispersion).

Teaching methods: Vorlesung und schriftliche Übungsaufgaben.

Mode of assessment: Schriftliche Modulabschlussprüfung (Modulklausur) von 2 h.

Requirement for the award of credit points: Bestandene Modulklausur, Bearbeitung aller schriftlichen Übungsaufgaben.

For further information please check the Vorlesungsverzeichnis

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Jürgen Schreuer; Dr. Marie Münchhalfen

Courses:
a) Mineralization in geothermal systems, 4 SWS
b) Synthetische Kristalle 2 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Kenntnisse über Aufbau und Symmetrieeigenschaften von Kristallen werden vorausgesetzt, Kenntnisse über Röntgenbeugung sind wünschenswert.

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Parameter und Prozesse, welche die Nukleation und das Wachstum von Keimkristallen in unterschiedlichen Milieus bestimmen.
  • sind Studierende in der Lage, Phasendiagramme zu lesen und unter Einbeziehung thermoanalytischer Daten mögliche Kristallisationsszenarien daraus abzuleiten.
  • kennen Studierende typische Verfahren zur Synthese bzw. Züchtung aus Lösung, Schmelze und Gasphase, und können diese im Hinblick auf das spezifische Züchtungsziel bewerten.
  • sind Studierende in der Lage, einfache Synthese-/Züchtungsaufgaben selbstständig durchzuführen und die Produkte strukturell und thermoanalytisch zu charakterisieren.

Content:

  • Stoffsysteme, Zustandsgrößen, thermodynamische Potentiale, chemische Potentiale, Phasenumwandlungen.
  • Phasenregel, Phasendiagramme, Ein- und Zweistoffsysteme.
  • Verteilungskoeffizienten, Segregationseffekte, Stofftransport durch Diffusion und Konvektion, Viskosität, konstitutionelle Unterkühlung.
  • Konventionelle Nukleationsprozesse, homogene und heterogene Keimbildung, kritischer Keimradius, Ostwald-Miers-Bereich, Ostwaldsche Stufenregel.
  • Wachstumsprozesse, Anlagerungsenergien, Grenzflächenenergien, Flächenkeime, Wachstumsgeschwindigkeiten, Einfluss von Versetzungen, Morphologie von Kristallen.
  • Nichtkonventionelle Nukleation und Wachstumsprozesse.
  • Lösungseigenschaften von Fluiden unter Bedingungen der Erdkruste
  • Experimentelle und technische Verfahren zur Einkristallzüchtung aus Gasphasen, Lösungen und Schmelzen.
  • Verfahren zur Charakterisierung von Kristallisationsprodukten (u.a. Differentialthermoanalyse, Röntgenbeugung).

Teaching methods: Vorlesung, praktische Laborübungen unter Verwendung diverser Züchtungs- und Messgeräte

Mode of assessment: Schriftliche Modulabschlussprüfung (Modulklausur) von 2 h.

Requirement for the award of credit points: Bestandene Modulklausur, Durchführung aller Laborübungen, erfolgreicher Bericht zu Laborübungen mit Auswertung der gewonnenen Beobachtungen/Messdaten.

For further information please check the Vorlesungsverzeichnis

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Jürgen Schreuer

Courses:
a) Kristallphysik, 3 SWS
b) Physikalische Charakterisierung, 4 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Kenntnisse über Aufbau und Symmetrieeigenschaften von Kristallen werden vorausgesetzt.

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Konzepte der tensoriellen Kristallphysik und verstehen die Zusammenhänge zwischen der atomaren Struktur von Kristallen und deren thermischen, mechanischen und elektrischen Eigenschaften,
  • sind Studierende befähigt, Strategien zur vollständigen Bestimmung tensorieller Eigenschaften von anisotropen Medien zu entwickeln,
  • kennen Studierende geeignete Messverfahren zur Untersuchung thermischer und elektromechanischer Eigenschaften und können entsprechende Messapparaturen nutzen sowie die dafür notwendigen Präparate herstellen,
  • sind Studierende in der Lage, Messergebnisse kritisch zu hinterfragen, mögliche Fehlerquellen zu diagnostizieren und deren Auswirkungen auf die Resultate zu quantifizieren.

Content: Kristallographische und kristallphysikalische Bezugssysteme. Zustandsgrößen, thermodynamische Potentiale, Basiseigenschaften. Nichttensorielle und tensorielle Eigenschaften, Transformationsverhalten. Einfluss von Symmetrie, Neumannsches Prinzip, Curiesches Prinzip. Herstellung von Präparaten für Messzwecke (Orientieren, Sägen, Schleifen). Longitudinal- und Transversaleffekte, Bezugsflächen, Extremwerte von Eigenschaften.
Tensoren 0. Stufe: Dichte und Wärmekapazität, Verfahren zur Bestimmung der Dichte bzw. Wärmekapazität.
Tensoren 1. Stufe: Symmetriereduktion, pyroelektrischer Effekt, Messstrategien, Tensorfläche.
Tensoren 2. Stufe: Symmetriereduktion, Bezugsflächen, symmetrische und antisymmetrische Tensoren, Hauptachsentransformation, Dielektrizitätstensor, Ferroelektrizität, Deformationstensor, thermische Ausdehnung einschließlich der gängigen Messmethoden.
Tensoren 3. Stufe: Tensorfläche, Messstrategien, piezoelektrischer Effekt, Elektrostriktion, Verfahren zur Messung von druckinduzierten Ladungen bzw. feldinduzierten Deformationen.
Tensoren 4. Stufe: Symmetriereduktion, Elastizitätstensoren, Voigt-Notation, Elastostatik, Elastodynamik, Wellenausbreitung in Kristallen, diverse Messmethoden (insbesondere Ultraschallresonanzspektroskopie).
Nichttensorielle Eigenschaften. Kritische Analyse von Messdaten und deren Aufbereitung für Berichte bzw. Publikationen.

Teaching methods: Vorlesung, praktische Laborübungen an typischen Messgeräten.

Mode of assessment: Schriftliche Modulabschlussprüfung (Modulklausur) von 2 h

Requirement for the award of credit points: Bestandene Modulklausur, Durchführung aller Laborübungen, erfolgreicher Bericht zu Laborübungen mit Auswertung der gewonnenen Messdaten.

For further information please check the Vorlesungsverzeichnis

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Dr. Michael Fechtelkord

Courses:
a) Festkörperspektroskopie I: NMR Spek., 2 SWS
b) Festkörperspektroskopie II: Allg. Spek., 2 SWS
c) Laborübungen zu FK I, 2 SWS
d) Laborübungen zu FK II, 2 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Mathematische und physikalische Kenntnisse zur Analysis und Vektoralgebra, sowie Kenntnisse der Elektrodynamik und Mechanik müssen in einem mit > 50% bewerteten Eingangstest (Dauer 1h) nachgewiesen werden.

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Konzepte der Spektroskopie und Quantenmechanik und kennen die wichtigsten spektroskopischen Methoden,
  • sind Studierende befähigt, Strategien zur Aufklärung lokaler atomarer Umgebungen zu verfolgen und die korrekte spektroskopische Methode anzuwenden,
  • kennen Studierende geeignete spektroskopische Messverfahren zur Untersuchung von anorganischen Festkörpern, natürlichen und synthetischen Mineralen,
  • sind Studierende in der Lage, spektroskopische Messergebnisse kritisch zu hinterfragen, mögliche Fehlerquellen zu diagnostizieren und deren Auswirkungen auf die Resultate zu quantifizieren.

Content:
a) Festkörperspektroskopie I: Festkörper NMR Spektroskopie:
Was ist NMR-Spektroskopie? Die Zeemanwechselwirkung. Geschichtliche Entwicklung der Technik. Continous Wave- und Impulstechnik. Spin-Gitter-Relaxation und Dynamik. Magnetische dipolare Wechselwirkungen. Pulsverfahren (Spin-Echo). Spin-Spin Relaxation. Die Chemische Verschiebung. Magic-Angle Spinning (MAS). Korrelation von Kernnachbarschaften durch heteronukleare dipolare Wechselwirkung: Cross-Polarisation (CPMAS), Rotational Echo Double Resonance (REDOR). Wirkungsweise der Quadrupolwechselwirkung. Wechselwirkungen 1. und 2. Ordnung, Anisotropie und Quadrupolshift. Magic Angle Spinning bei Quadrupolwechselwirkungen 2. Ordnung. Räumliche und Puls-Ausmittelungsmethoden: Double Rotation (DOR), Dynamic Angle. Spinning (DAS), Multiquanten Magic Angle Spinning (MQMAS)

b) Festkörperspektroskopie II: Allgemeine Spektroskopie:
Wozu braucht man Quantenmechanik: Physikalische Phänomene, die sich nicht klassisch erklären lassen. Plancks Quantelung von Energiezuständen, Welle-Teilchen Dualismus. Wellenfunktion, Hamiltonoperator, Eigenwerte, -funktionen und Schrödinger-Gleichung, Heisenbergsche Unschärferelation. Quantenmechanik einfacher eindimensionaler Systeme. Die elektromagnetische Welle – Aufbau und Polarisation. Wellenlängenbereiche und Anwendung in der Spektroskopie. Intensität und Breite von Spektrallinien. Absorption / Emissionsspektren – Einstein-Koeffizienten. Energieniveaus und Übergangswahrscheinlichkeiten. Rotations- und Schwingungsspektroskopie: Starrer und nicht-starrer Rotator, harmonischer und anharmonischer Oszillator. Auswahlregeln Infrarotspektren, Aufbau moderner Infrarotspektrometer. Raman-Spektroskopie: Rayleighstreuung, Stokes- und Anti-Stokes Linien. Schwingungstypen und Gruppentheorie, Irreduzible Darstellungen, Charaktertafeln, Charaktere, Ordnung, Symmetriespezies, Bestimmung der Schwingungstypen mit Hilfe von Charaktertafeln, Bestimmung von erlaubten und verbotenen Übergängen. Ramanspektren und Aufbau moderner Ramanspektrometer. IR- und -Schwingungsspektren von Mineralen. Elektronenspektroskopie: Ein- und Mehrelektronenatome, Elektronenübergänge, Auswahlregeln, Russell-Saunders Kopplung. Atomabsorptions- und emissionsspektroskopie, Röntgenspektroskopie (XPS, EXAFS). Die Schwingungsstruktur der Elektronenübergänge: Feinstruktur und Franck-Condon-Prinzip. Fluoreszenz und Phosphoreszenz, Funktion von LASERn. UV-VIS Spektroskopie: Aufbau eines UV-VIS Spektrometers, Kristallfeldtheorie, Molekularorbitaltheorie, d-d Übergänge und Charge-Transfer Übergänge, Termsymbole, Jahn-Teller Verzerrung, Tanabe-Sugano Diagramme. EPR Spektroskopie: Der Elektronen-Zeeman-Term. Elektronenspinwechselwirkungen: Die Nullfeld-Aufspaltung (ZFS). Elektronen-Kernspinwechselwirkungen: Die Hyperfeinstruktur (HFS). Aufbau eines EPR cw-Spektrometers: Einkristallspektren und Rotationsdiagramme. Der Mößbauereffekt: Rückstoßfreie Kernresonanzabsorption. Das Mößbauerspektrometer: Ausnutzung des Dopplereffektes. Isomerieverschiebung, Quadrupol- und magnetische Hyperfeinaufspaltung.Typischer Mößbauerkern in den Geowissenschaften: 57Fe. Mößbauerspektren von Mineralen: Bestimmung des Fe2+ / Fe3+ -Verhältnisses

Teaching methods: Vorlesung, praktische Laborübungen an typischen Spektrometern (NMR, IR, UV-VIS).

Mode of assessment: Mündliche Modulabschlußprüfung von 30 min..

Requirement for the award of credit points: Bestandene mündliche Modulabschlußprüfung, verpflichtender Besuch der Vorlesungen, Durchführung aller Laborübungen, erfolgreiche Berichte zu Laborübungen mit Auswertung der gewonnenen Messdaten.

For further information please check the Vorlesungsverzeichnis

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): N.N

Courses:
a) Strukturbestimmung (Vorlesung), 3 SWS
b) Röntgenbeugung (Übung), 4 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Kenntnisse über Aufbau und Symmetrieeigenschaften von Kristallen werden vorausgesetzt, Kenntnisse in der Kristallchemie und der Kristallphysik sind wünschenswert.

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Prinzipien der Symmetrielehre, der Röntgenbeugung und verschiedener Strukturbestimmungsverfahren,
  • kennen Studierende typische Techniken und Abläufe der Strukturanalyse und können erforderliche Korrekturfaktoren anwenden.
  • sind Studierende in der Lage, für ein gegebenes Problem eine passende Vorgehensweise auszuwählen und beherrschen in Grundzügen die erforderlichen Computerprogramme.
  • sind Studierende in der Lage, auf der Basis eines gegebenen Datensatzes eine Kristallstrukturbestimmung selbstständig durchzuführen und die Qualität des Ergebnisses zu beurteilen.

Content: Kristallographische Grundbegriffe, Kristallsysteme, Kristallklassen, Raumgruppen, Bravais-Gitter, translationsbehaftete Symmetrieelemente. Das reziproke Gitter, Röntgenbeugung, die Braggsche Gleichung, die Ewald-Konstruktion Beugung an Netzebenenscharen. Erzeugung von Röntgenstrahlung, charakteristische Strahlung, Absorption, Berechnung von Absorptionskoeffizienten. Wechselwirkung von Röntgenstrahlung mit Materie, der Atomformfaktor. Der Strukturfaktor, Phasenwinkel. Auslöschungsgesetze, Zusammenhang von Reflexintensität und Strukturfaktor, Korrekturfaktoren Polarizationsfaktor, Lorentzfaktor, Absorptionsfaktor, Skalenfaktor, Temperaturfaktor, Extinktionsfaktor, Häufigkeitsfaktor, Polarisationsfaktor des Monochromators Die Fouriertransformation, Differenz-Fourier-Synthese Strukturbestimmungsverfahren, die Schweratommethode, Direkte Methoden, Methode des isomorphen Ersatzes, die Patterson-Methode, Anomale Dispersion Zwillinge Strukturverfeinerung, Restraints und Constraints, Qualitätsfaktoren Darstellung von Kristallstrukturen.

Teaching methods: Vorlesung, Rechenübungen und praktische Laborübungen unter Verwendung von Röntgendiffraktometern.

Mode of assessment: Schriftliche Modulabschlussprüfung (Modulklausur) von 2 h.

Requirement for the award of credit points: Bestandene Modulklausur, Durchführung aller Laborübungen, erfolgreiche Berichte zu Rechenübungen.

For further information please check the Vorlesungsverzeichnis

Term: 1. or 3. Sem.

Credits: 7 CP

Module coordinator and lecturer(s): Prof. Dr. Jürgen Schreuer

Courses: 
a) Mineralization in geothermal systems (lecture)
b) Mineralization in geothermal systems (laboratory course)

Prerequisites:
Formal:
Only for students in the bi-national Master’s program „Applied Geothermics“
Textual:
Basic knowledge about thermodynamics, and structure and chemical behavior of minerals.

Learning outcomes
After the successful completion of the module

• students know the basic parameters and processes that determine the nucleation and growth of seed crystals in different environments,

• students are able to read basic phase diagrams and, taking thermoanalytical data into account, derive possible crystallization scenarios,

• students are able to carry out simple synthesis/growth tasks independently and to characterize the products structurally and thermoanalytically.

Content:

  • Material systems, state variables, thermodynamic potentials, chemical potentials, phase transformations.
  • Phase rule, phase diagrams, one- and two-component systems. Partitioning coefficients, segregation effects, mass transport by diffusion and convection, viscosity, constitutional supercooling.
  • Conventional nucleation processes, homogeneous and heterogeneous nucleation, critical nucleus radius, Ostwald-Miers range, Ostwald's step rule.
  • Growth processes, accumulation energies, interfacial energies, growth rates, influence of dislocations, morphology of crystals.
  • Non-conventional nucleation and growth processes.
  • Solution properties of fluids under conditions of the earth's crust. 
  • Methods for characterizing crystallization products (including differential thermal analysis, X-ray diffraction).

Teaching methods: Lecture and laboratory exercises.

Mode of assessment: Written exam of 2 h.

Requirement for the award of credit points: Passed module exam, processing of all laboratory exercises, successful report on laboratory exercises with evaluation of the observations/experimental data obtained.

For further information please check the Vorlesungsverzeichnis

 

Earthquake physics and processes

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington

Courses: Earthquake seismology and the seismic cycle, 4 SWS

Prerequisites: The course module is open to all MSc students with a background in the Earth sciences (BSc degree). It has a co-requisite of Physics of the Solid Earth II

Learning outcomes:

After successful completion of the module, students will be able to

  • understand and explain earthquake source parameters such as seismic moment, magnitude, static stress drop, radiated energy, and spectral corner frequency.
  • understand how earthquake source parameters are measured and quantified, such as via fault plane solutions, moment tensors, directivity.
  • understand and explain empirical earthquake relations, such as the Gutenberg-Richter magnitude-frequency relation, Omori’s Law.
  • understand the basics of seismic signal processing and its applications to studies of earthquakes.
  • understand and explain the relation between earthquake occurrence and friction on fault surfaces, as well as fracture mechanics models of earthquakes.
  • understand and explain the earthquake cycle and the occurrence of intraplate and interpolate earthquakes.
  • relate earthquake triggering and induced earthquakes to tectonic and stress loading, and identify possible earthquake triggers.
  • understand and describe physical characteristics and underlying mechanisms of the various types of volcanic seismic signals observed at active volcanoes.

Content: Topics included in the course include: Earthquake source studies (focal mechanisms, moment tensors, directivity, seismic moment, source spectra and scaling laws, energy partitioning, stress drop and radiated energy), earthquake statistics, fundamentals of seismic signal processing, fracture mechanics and its relation to rate-state friction, fault friction and the effects of temperature and pressure at depth, earthquake cycle deformation and the spectrum of fault slip, inter- and intraplate earthquakes, fault drilling, volcanic earthquakes, and triggered and induced earthquakes. 

All lecture materials are digitally available via the course Moodle, and student projects are strongly encouraged to incorporate digital data processing. Lectures and paper discussion occur in English.

Teaching methods: Lecture period of 1,5 hours/week followed by paper discussion and/or exercises of 1,5 hours/week

Mode of assessment: Final report weighted 70% for the written component (with a 10-week working period), with the remaining 30% weight being placed on the oral presentation the last week of the lecture period. Paper discussion/exercises will be evaluated based on participation, and must be completed with a passing grade of 60% in order to submit the final report.

Requirement for the award of credit points: Passing grade for the paper discussion entitles the course participant to submit the Module Exam (term project). Term project presentation with a passing grade (written and oral parts will be combined for a total number of points).

For further information please check the Vorlesungsverzeichnis

Term: WS/SS (recurring every semester).

Credits: 9 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington

Courses:
a) Induced seismicity seminar, 2 SWS
b) Fault transition zones, 2 SWS
c) Seismic data and time series analysis, 2 SWS

Prerequisites: The course module is open to all MSc students with a background in the Earth sciences (BSc degree) who have completed either the Earthquake Processes module or the Seismotectonics and Seismic Hazard module

Learning outcomes:

After successful completion of the module, students will

  • After successful completion of the module, students will • understand the different causes of induced earthquakes, including fluid injection from unconventional energy production, mining, gas/fluid extraction.
  • be familiar with the geological settings and controls in which earthquakes are produced.
  • understand and describe the statistical properties of induced earthquakes, as well as the current understanding of correlations between injection parameters and event magnitude.
  • be familiar with the competing influence of effective vs. poroelastic stress transfer in the role of generating fault failure, as well the current related scientific studies.
  • understand the chemical and mechanical differences in the brittle-ductile transition zone, and the relation to seismic vs. aseismic slip generation.
  • have a quantitative understanding of the different types of slip events that generate a spectrum of seismic and aseismic signals, including tectonic tremor and LFEs, and slow-slip events.
  • have the programming skills to perform basic signal processing and dat

Content: Overview of induced earthquakes in the context of fluid flow near faults and fault systems, the influence of lithology and geology on generating induced earthquakes, statistics and source properties of induce earthquakes, earthquakes induced by reservoir impoundment, gas extraction, enhanced geothermal systems, wastewater and hydraulic fracturing injection, physical mechanisms that induce fault slip, the seismogenic and brittle-ductile transition zone in the crust, seismic and geodetic signals from the seismogenic and fault tranisition zone, slow earthquakes and triggering of earthquakes at shallower depths, slow earthquakes as stress meters, the rock record of fault slip, experimental work on slow earthquakes, tectonic tremor, transition zone evolution after large earthquakes.  Digital analysis of seismic signals including, installation and setup of seismic analysis software (Python), making maps, downloading and analyzing earthquake catalog data, picking seismic phases, analyzing earthquake source parameters, and visualizing all results.

Teaching methods: Courses (a) and (b) are held in a group discussion format, where (c) consists of digital teaching format with accompanying lectures.

Mode of assessment: The course consists of scientific paper discussion (a) and (b), as well as lecture and exercises for (c).
The paper discussion in (a) and (b) as well as exercises in (c) must be evaluated a passing grade (70%) to complete the final report (due upon completion of (c)) on which the module grade will be based.
The grade for the module is based on the grade assigned for course (c) (it is recommended, but not required, to complete both (a) and (b) before the completion of (c)).
Courses (a) and (b) require leading at least one group discussion on a weekly reading topic, as well as active participation in discussions, and will be evaluated on a pass/no-pass (70%) basis.
Courses (a) and (b) must be completed with a “pass” basis in order for the final module grade to be given upon completion of the report in (c).

Requirement for the award of credit points: Passing grades for courses (a) and (b) require the presentation/leading of one reading topic and active participation in 70% of the discussions. The report grade for (c) will be distributed once (a) and (b) have been successfully completed.

For further information please check the Vorlesungsverzeichnis

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington, Dr. Alessandro Verdecchia

Courses: Seismotectonics and seismic hazard, 4 SWS

Prerequisites: Students must have successfully completed a BSc in the earth sciences. The course consists of exercises and lecture; exercises must be completed with a passing grade (60%) to access to the final exam on which the module grade will be based. It has a co-requisite of Physics of the Solid Earth II.

Learning outcomes:

After successful completion of the module, students will be able to

  • understand the relationship between lithosphere rheology and earthquake distribution.
  • understand the relationship between frictional properties and faulting.
  • understand the basics of earthquake detection and location.
  • understand the relationship among subsequent earthquakes (earthquake and fault interactions).
  • understand the primary (faulting) and secondary (liquefaction, landslides, etc.) effects produced by seismic events.
  • understand the basics of Tectonic Geodesy.
  • understand the basics of Tectonic Geomorphology.
  • understand the basics of Paleoseismology.
  • understand the basics of probabilistic and deterministic seismic hazard calculations.

Content: A multidisciplinary approach is strongly needed in order to better understand the seismic potential of any region in the world. Geological data give us a long-term (thousands of years) view of earthquake phenomena, but they are limited to the first meters of the crust. Seismological and geophysical data can generally better describe deformation processes occurring at depth, but usually with a smaller temporal (tens of years) and spatial resolution. This course will provide an introduction to the earthquake problem from both geological and geophysical points of view, with emphasis on the methodologies commonly used to produce the data necessary to understand and quantify the seismic hazard in any active region.

Topics included in the course are: Rheology of the lithosphere, frictional properties of faults, the seismic cycle, earthquake location, geological effects of earthquakes, tectonic geodesy, tectonic geomorphology, paleoseismology, earthquake and fault interactions, probabilistic and deterministic seismic hazard.

In addition to theoretical information presented via lecture material, the practical exercises teach fundamental data analysis via MATLAB, and other software distributed during the course.

Teaching methods: Lecture period of 2 hours/week with practical exercises of 2 hours/week. Exercises are completed primarily in digital format (basic programming in Matlab).

Mode of assessment: Exercises must be completed with a passing grade of 60% in order to access the final exam. The grade of the module is based on the grade of the final written exam.

Requirement for the award of credit points: Exercises must be completed with a passing grade of 60% in order to access the final exam. The module grade is based on the final exam grade.

For further information please check the Vorlesungsverzeichnis

Term: Summer semester

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington

Courses:
Geology and geohazards in an active subduction zone

Prerequisites: Open to all MSc students. No prerequisites, but an introductory course in geophysics/seismology and/or structural geology will be helpful.

Learning outcomes: After successful completion of the module, students will

  • be able to assess and quantify uplift associated with large thrust fault earthquakes (e.g., Mw 8.3 July 365 CE earthquake in the Hellenic subduction zone) and recent uplift based on current location of tectonic units.
  • recognize and map tsunami landscapes and associated deposits
  • map fault surface trace orientations, measure kinematic indicators, and quantify associated displacement. Use observations collected in the field to estimate regional stress field orientations through stereographic projections.
  • measure fold elements and estimate the stress field through stereographic projections.
  • perform earthquake locations using NonLinLoc (open source program) and assess possible associated geo-hazards given the obtained hypocentral coordinates and magnitudes.
  • use the seismotectonic setting and earthquake locations to evaluate tsunami hazard and estimate an early warning time window.

Content: This block course will give an introduction to the world of earthquake and tsunami hazards in an active subduction zone, associated geological and seismological observations, and the methods used to study them. It will explore the fundamental mechanics of faulting in an active subduction zone through a combination of fieldwork that examines along arc extension, compression related to the subduction thrust, and kinematic/structural indicators of deformation. It will also explore onshore evidence of subduction thrust movement, including archeological evidence of large historical earthquakes and tsunami deposits. In addition, current deformation as evidenced by earthquakes will be explored through exercises using seismic data and analysis that combines theoretical, observational, and field perspectives. A preparatory 3-hour lecture block will take place prior to a 7-day trip that will consist of 1.5 days of lecture/data analysis, and five days of field work. The course is open to MSc students.

Teaching methods: Course will consist of a combination of lecture format with digital materials, group discussion format, and exercises using open source software and digital forms of data, and which digitize field observations.

Mode of assessment: Evaluation of the report due after the completion of course.

Requirements for the award of credit points: Passing grade for the course.

For further information please check the Vorlesungsverzeichnis

Geophysics

Term: 1. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. W. Friederich

Courses:
a) Geophysical inverse problems (WS, alternating with b), 3 SWS
b) Seismic and electromagnetic field methods (WS, alternating with a), 3 SWS

Prerequisites: Textual: sound mathematical skills (vector calculus, differential- and integral calculus), basic expertise in programming, basic knowledge of mechanics and electrodynamics

Learning outcomes: Students understand the theoretical foundations of seismic and electromagnetic field methods and know up-to-date measuring and data-acquisition procedures.  They know and understand state-of the-art methods of data analysis and interpretation. Students understand the general philosophy of how to properly set up and solve geophysical inverse problems to create subsurface models from geophysical field surveys. They know different approaches to mathematically formulate an inverse problem and various techniques to obtain solutions in practice.  They are able to solve small-scale problems themselves by writing a computer program.

Content:
a) Geophysical Inverse Problems:
Mathematical precursor on linear vector and Hilbert spaces, the continuous linear inverse problem with exact and uncertain data, discrete linear inverse problems with uncertain data, singular value decomposition, resolution analysis, conjugate gradient minimization, linearized iterative inverse problems 

b) Seismic and electromagnetic field methods:
Data acquisition in reflection seismics, seismic data processing, ray and wave-equation migration, basic electromagnetic theory, electromagnetic fields in matter, geoelectric sounding and induced polarization, electromagnetic diffusion and waves in matter and ground penetrating radar

Teaching methods: Lectures accompanied by assignments to be worked out and solved at home encompassing mathematical problems and programming tasks

Mode of assessment: written module examination, 120 minutes

Requirement for the award of credit points: passed module examination, bonus points for voluntary presentation of solutions to exercises

For further information please check the Vorlesungsverzeichnis

Term: 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Jörg Renner (coordinator)

Courses:
a) Reservoir geophysics (SS), 3 SWS
b) Rock physics (SS), 3 SWS

Prerequisites: Textual: sound mathematical skills (vector calculus, differential- and integral calculus)

Learning outcomes: After successful completion of the module students

  • appreciate the scale-dependent approach to the physical characterization of rocks (micro- to decimeter-scale) and reservoirs (deci- to kilometer-scale)
  • understand the relation between physical properties of rocks and their chemical composition and microstructure
  • learned the use and limits of empirical and theoretical concepts for the description of heterogeneous media
  • know the practical aspects of a suite of methods in exploration geophysics
  • are familiar with the mathematical description of physical processes on rock and reservoir scale
  • understand the origin of the governing partial differential equations and master some approaches to their solution

Content:
a) Reservoir geophysics (large-scale perspective):
1) Introduction to reservoirs (hydrocarbon, geothermal)
2) Physical properties of reservoir fluids 3) Hydraulic transport (Kozeny-Carman relation) and storage (linear poro- elasticity I: isostatic stress states)
4) Theory and practice of pumping tests (diffusion equation, scaling)
5) Geothermics (add advection to diffusion)
6) Aspects of waves in real media (wave equation, linear poro-elasticity II: add deviatoric stresses)

b) Rock physics (small-scale perspective):
1) Introduction to rocks and minerals
2) Porosity and interface phenomena
3) Hydraulic transport in rocks (Darcy's law, permeability models)
4) Elasticity (stress, strain, Hooke's law, averaging schemes)
5) Failure of rocks (fracture and friction)
+ Lab practical: students independently conduct simple experiments to determine basic physical properties of rocks (density, porosity, permeability) and fluids (density, viscosity)

Teaching methods: Lectures, assignments (deepening of contents through own research, solving of analytic
and numerical problems), laboratory experiments

Mode of assessment: Written final exam (3 hours), report on lab experiments

Requirement for the award of credit points: Passed module exam (at least 50%)

For further information please check the Vorlesungsverzeichnis

Term: 1. Sem.

Credits: 14 CP

Module coordinator and lecturer(s): Prof. Dr. Friederich (Coordinator), Prof. Dr. Renner

Courses:
a) Field practical, 6d field and 4d data analysis
b) Scientific programming, 3 SWS
c) Geophysical seminar, 4 SWS

Prerequisites:
Textual: basic programming experience
Preparation: Field-practical guide, Python online documentation and tutorials, Metcalf, M.: Fortran 95/2003 explained, selected scientific papers

Learning outcomes: After successful completion of the module, students

  • are able to plan and setup a field campaign, choose appropriate methods and instruments, carry out measurements and use available techniques to analyse the data when given a geophysical survey task.
  • gained proficiency in a programming language (either Python or Fortran) to the extent that they can exploit advanced concepts, such as object-oriented programming, and thus are able to write programs to analyse data acquired in the field, numerically solve geophysical problems, and visualize the results.
  • learned how to perform general and topical literature surveys and how to perform an exegesis of a scientific publication.
  • applied their acquired knowledge and skills to understand and also summarize publications from different fields of geophysics.

Content:
a) Field practical:
Students plan and organize a geophysical field campaign to investigate a specific subsurface target using a specifically selected combination of geophysical survey methods, such as seismics, magnetics, geoelectrics, ground penetrating radar or gravimetry. Data are acquired in the field and analysed in the class-room using state-of-the-art techniques. Programming skills are employed to prepare and organize data and to visualize results for further interpretation.

b) Scientific programming:
Data types, assignments, mathematical operations and functions, input/output, characters and strings, arrays and loops, conditional statements, subroutines and functions, modules, derived data types, polymorphic types and classes. Application of concepts to geophysical problems. Programming Language: Python.

c) Geophysical Seminar:
Literature seminar about a specific geophysical topic where students read and work through selected publications to later report to their fellow students on the contents in a seminar. The student presenters take on the role of moderators during the subsequent discussion of the papers and their presentations.

Teaching methods: Field work, group and project work, oral presentations

Mode of assessment: Report for field practical, evaluation of written programs, oral presentations and
attendance in seminar

Requirement for the award of credit points: Passed report, submission of programming work, and oral presentation

For further information please check the Vorlesungsverzeichnis

Term: 1., 2. or 3. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Friederich, Prof. Dr. Renner

Contact hours: 20 days

Learning outcomes: After successful completion of the module Students are able to tackle and master a defined task in a timely and organized way

Content:Theoretical and practical tasks related to research activities of the institute’s working groups or of companies

Teaching methods: Team work, project work

Mode of assessment: Report

Requirement for the award of credit points: Assessment of a written report by the advisor

 

Term: 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. W. Friederich

Courses:
a) Seismological data analysis
b) Seismic waves: theory and numerical modelling

Prerequisites: Textual: good English language skills, sound mathematical skills (vector calculus, differential- and integral calculus), basic knowledge of elasticity theory, basic expertise in programming

Learning outcomes: After successful completion of the module students

  • understand the theoretical foundations of seismic wave propagation, and understand and are able to apply selected numerical methods for simulation of seismic wave propagation.
  • know a selection of the most important methods for seismological data analysis, understand them, are able to apply them to simple datasets and to partially implement them by writing a computer program.

Content:
a) Seismological data analysis:
digital signal recording, Nyquist theorem, Fourier transform, analogue and digital filtering, spectral analysis, time-frequency analysis by multiple filtering methods and moving window analysis, dispersion analysis, receiver function analysis, beam forming and splitting analysis, programming in Python

b) Seismic waves:
Stress and strain, seismic wave equation in 3D heterogeneous media, Green functions for 1D, 2D and 3D wave propagation, seismic waves from a point source in full space, description of seismic sources, moment tensor, seismic waves in layered media, numerical simulation methods, finite differences and finite volume, Galerkin finite element methods, programming in Python

Teaching methods: Lectures accompanied by assignments to be worked out and solved at home encompassing mathematical problems and programming tasks

Mode of assessment: written module examination, 120 minutes

Requirement for the award of credit points: passed module examination, bonus points for voluntary presentation of solutions to exercises

For further information please check the Vorlesungsverzeichnis

Term: 1. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Jörg Renner (Coordinator)

Courses:
a) Continuum mechanics (WS, alternating with b), 3 SWS
b) Physics of earth materials (WS, alternating with a), 3 SWS

Prerequisites: Textual: sound mathematical skills (vector calculus, differential- and integral calculus)

Learning outcomes: After successful completion of the module students

  • know micromechanical/atomistic concepts behind bulk properties (in particular density and viscosity)
  • appreciate the basic theoretical concepts of solid-state physics and thermodynamics
  • are familiar with the basic approaches and techniques in continuum mechanics
  • understand the basic concept of numerical solution of differential equation master
  • are capable of coding simple finite-difference schemes
  • grasp the relevance of physical properties of rocks for geodynamic problems, such as subduction and delamination
  • can apply the introduced mathematical tools to problems encountered for the three Earth spheres, atmosphere, hydrosphere, and geosphere

Content:
a) Continuum Mechanics:
1) Differentiation and integration of scalar and vectorial fields
2) Kinematics (Euler and Lagrange description)
3) Conservation laws in differential and integral form (Navier-Stokes equations)
4) Applications (Specific cases of the Navier-Stokes equations and similarity numbers)

b) Physics of Earth materials:
1) Geophysical and geochemical Earth models
2) Elastic constitutive equations for minerals at high temperature and pressure
3) Crystal defects (point defects, dislocations, grain boundaries)
4) Deformation mechanisms at high temperatures (diffusion and dislocation creep)
5) Applications of flow laws to geodynamic problems

Teaching methods: Lectures, assignments (deepening of contents through own research, solving of analytic
and numerical problems including programming of a finite-difference algorithm)

Mode of assessment: Written module exam (3 hours)

Requirement for the award of credit points: Passes module exam (at least 50%)

For further information please check the  Vorlesungsverzeichnis

Petrology & Geochemistry

Term: 2. + 3. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Dr. Thomas Fockenberg

Courses:
a) Methods of rock analysis
b) Practicals on rock analysis

Prerequisites:

Learning outcomes:

After completion of the module the students

  • know methods to quantify the chemical content of solid materials.
  • can make qualified decisions about which analytical method is best suited for a given analytical problem.
  • are able to critically evaluate the results, to analyze possible sources of errors, and their influences on the results.

Content:

  • Lecture in methods of rock analysis: Fundamentals of electromagnetic rays and interaction with matter. Atomic-Absorption Spectroscopy (AAS), X-ray fluorescence spectroscopy (XRF), coulorometry, potentiometric methods, nuclear methods (e.g. RBS, NRA), general principles of mass spectrometry and different kinds of mass spectrometry, laser-ablation inductively coupled mass spectrometry (LA-ICP-MS), secondary ion mass spectroscopy (SIMS).
  • Sample preparation methods.
  • Practicals on rock analysis: complete chemical analysis of a silicate rock will be carried out, and the errors and uncertainties in the results will be evaluated.  

Types of courses: Lecture, practicals

Types of examinations: Written exam of the contents of the lecture. A passed exam is a prerequisite for the attendance of the practical. Written report of the analyzed sample, determination of the P-T-condition of a metamorphic rock (computer program Perple X) or determination of the sample name and its geodynamic setting plus the crystallization history (computer programs GCD Kit and Pele).

Prerequisites for earning the credit points: Passed written exam and passed report. The written exam is graded and determines the grade of the module. The report of the practical is not graded.

For further information please check the Vorlesungsverzeichnis

Term: 1. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Sumit Chakraborty

Courses:
a) Petrology of igneous rocks, 2 SWS
b) Thin section exercises with igneous rocks, 2 SWS
c) Numerical exercises with data from igneous rocks

Prerequisites: -

Learning outcomes: The students

  • gain an advanced understanding of igneous petrology.
  • master detailed microscopic and macroscopic descriptions and documentation of igneous rocks
  • are able to use textural and thermodynamic criteria to work out the genetic history of the rocks
  • know how to place the results in a geodynamic context of thermal evolution of the crust and the mantle

Content:
a) Petrology of igneous rocks:
Thermal structure of the Earth and formation of melts. Classification of Igneous rocks. Geochemical characteristics of igneous rocks. Trace element and isotopic characteristics of igneous rocks. Physical properties of silicate melts. Phase equilibria and phase diagrams. Melting in the mantle. Igneous processes in selected tectonic settings: Mid ocean ridges, subduction zones. Crustal melting and genesis of granitic rocks. Volcanic processes and basics of volcanology and volcanic hazards.

b) Thin section exercises with igneous rocks:
Igneous minerals in thin sections. General information on documenting thin section reports. Case studies of a range of volcanic and plutonic rocks to read the rock record to infer the processes that led to their formation. An emphasis is on relating the observations to phase diagrams and on inferring multistage processes from the rock record.

c) Numerical exercises with data from igneous rocks:
Calculation of CIPW Norm. Trace element modelling. Calculation of magma mixing, fractionation, assimilation and other igneous processes. Use of thermodynamic software such as MELTS to calculate equilibrium assemblages and compositions as well as to model the evolution of magmatic systems.

Types of courses: Lectures and practicals (microscopy and calculations).

Types of examinations: A final written examination including questions on microscopy of thin sections.

Prerequisites for earning the credit points: Passing the examination

For further information please check the Vorlesungsverzeichnis

Term: 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Sumit Chakraborty

Courses:
a) Principles of chemical kinetics (3 CP), 2 SWS
b) Diffusion chronometry (4 CP), 2 SWS
c) Kinetic modelling (3 CP), 2 SWS

Prerequisites: -

Learning outcomes: Students understand

  • the basic principles of chemical kinetics
  • how to use kinetics to determine timescales
  • how frozen records are produced in rocks during cooling after a thermal event

Content:
a) Principles of chemical kinetics:
Rate laws of chemical kinetics. Elementary reactions and reaction mechanisms. Factors that control chemical kinetics. Crystal growth kinetics (including discussion of crystal size distribution, CSD). Nucleation rate laws. Combined nucleation and growth – overall transformation and TTT diagrams. Closure temperatures. This course will have lectures.

b) Diffusion chronometry:
Diffusion in solids. Different kinds of diffusion coefficients. Factors that control diffusion coefficients. Experimental methods for determination of diffusion rates. Setting up a diffusion model. Different kinds of approaches to get timescales – isothermal systems. Different kinds of approaches to get cooling and exhumation rates – non-isothermal
systems. Errors and uncertainties Case studies. This course will have lectures and practicals.

c) Kinetic modelling:
Coupled processes in series and parallel. Rate limiting behavior. Reaction mechanism maps. Combination of chemical kinetics, fluid transport and chemical equilibrium

Types of courses: Lectures and practicals

Types of examinations: A written final examination

Prerequisites for earning the credit points: Passing grades in the final examination

For further information please check the Vorlesungsverzeichnis

Term: 2. Sem.

Credits: 12 CP

Module coordinator and lecturer(s): Dr. Hans-Peter Schertl, Dr. Niels Jöns, Prof. Annika Dziggel (Ph.D.), 

Courses:
a) Petrology of metamorphic rocks, 2 SWS
b) Thin section exercises with metamorphic rocks, 2 SWS
c) Numerical exercises with data from metamorphic rocks, 2 SWS
d) THERMOCALC course, 1 SWS

Prerequisites: -

Learning outcomes: The students

  • gain an advanced understanding of metamorphic petrology.
  • master detailed microscopic and macroscopic descriptions and documentation of metamorphic rocks
  • are able to use textural and thermodynamic criteria to work out the genetic history of the rocks
  • know how to place the results in a geodynamic context.

Content:
a) Petrology of metamorphic rocks:
Introduction to the basic questions in petrological research; how metamorphic rocks can be used to answer geodynamic questions. Crystal chemical basis (coordination polyhedral, exchange vectors). Representation of minerals in chemographic diagrams. Gibbs phase rule. Topology of phase diagrams and thermodynamic basis. Types of metamorphism: Regional – limited (cataclastic, mylonitic, contact); Regional – extended (Burial, orogenic). P-T-t evolution due to crustal thickening and extension. Subduction, magmatic underplating. Metamorphic zones and Facies series. Barrow type, Abukuma type, Subduction type. Types of metamorphic equilibria: Solid-gas equilibria (dehydration reactions, decarbonation reactions, redox reactions). Solid-solid reactions (Influence of solid solution on location of phase boundaries, divariant thermometers, divariant barometers). Trace element thermometers. Zoning in minerals (diffusion controlled growth, retrograde Fe-Mg exchange). Mass transport in metamorphism (Fluid flow, metasomatism). Observations of metamorphic evolution of model systems (Ultramafics, metabasics, calc-silicates, metapelites). Basics of geochronology of metamorphic rocks.

b) Thin section exercises with metamorphic rocks:
Identification of the most important metamorphic minerals in thin sections. General information on documenting thin section reports. Case studies of metapelites and metabasites (hand specimen description, petrographic description, texture analysis, discussion of possible protoliths, P-T evolution, phase relations, topology of phase diagrams).

c) Numerical exercises with data from metamorphic rocks:
Calculation of mineral formulae from chemical analyses. Representation of mineral compositions and phase relations. Schreinemaker’s Analysis. Application of Clausius-Clapeyron equation to construct phase boundaries in P-T space. Generation of compatibility diagrams. P-T sections, T-X sections, P-X sections and P-T pseudosections with the help of thermodynamic software. Interpretation of the results using examples from real metamorphic rocks. Geothermobarometric calculations. Derivation of P-T conditions of formation of rocks on the basis of P-T grids.

d) THERMOCALC course:
Advanced pseudosection modelling course for more complex model systems involving solid solutions, based on case studies in metabasic rocks.

Types of courses: Lectures and practicals (microscopy and calculations).

Types of examinations: Graded final report. Each individual makes microscopic observations on a sample, interpret the results and carry out numerical calculations associated with the observations.

Prerequisites for earning the credit points: Report with passing grade

For further information please check the Vorlesungsverzeichnis

Term: 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Sumit Chakraborty

Courses:
a) Principles of elementary thermodynamics, 4 SWS
b) Solution phase thermodynamics, 2 SWS

Prerequisites: -

Learning outcomes: Students understand

  • the basic principles of thermodynamics
  •  solution thermodynamics and know thermodynamic modelling

Content:
a) Principles of elementary thermodynamics:
Nature of Thermodynamics; Definition of Systems (Open, Closed, Isolated), processes (Reversible, Irreversible etc.), Time scales - to the extent it does or does not play a role. Work, Energy and Functions of state Heat. Energy Conservation and first law (i.e. What is possible?) Heat capacity, Enthalpy. Irreversibility and Entropy - second law and very brief mention of third law (i.e. What  really happens?) Combined first and second law and Master equation of thermodynamics - energy balance Mathematical digression - Exact and Inexact differentials, Legendre Transformation, Chain rule. Accessory Functions - G, H and A. Maxwell's Laws. P-V-T Equation of State for Solids, Fluids and Gases - What properties they should have and what they look like for some geomaterials. Chemical equilibrium - I. Stoichiometric substances (Concept of G minimum, log K and Clausius-Clapeyron equation and P-T slopes). This will have two hours of lecture and two hours of practical with homework problems to be solved outside of class contact hours.

b) Solution phase thermodynamics:
Chemical Potential, Activity, Fugacity. Raoult and Henry's law. Possibility of various standard states (i.e. nothing unique about it), e.g. 1bar, T vs. P,T Ideal and excess properties, activity – composition relations, dilute solutions and trace elements, Free-energy composition relations i.e. G-X diagrams and stability of solutions. Combine chemical equilibrium relations and Mixtures to calculate - (i) Shift of equilibrium boundaries on solution formation (ii) Phase rule and Duhem's theorem, with various applications. (introduce various free energy minimization softwares) Temperature (and pressure) dependence of reactions (Delta H) and melt phase diagrams (Eutectic, binary solid solution loop). Thermodynamics of electrolytes and ocean water. This course will have lectures and discussions.

Types of courses: Lectures and practicals

Types of examinations: A written final examination

Prerequisites for earning the credit points: Passing grade in the final examination

For further information please check the Vorlesungsverzeichnis

Term: Summer semester

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Raúl Fonseca

Courses:
a) High-Temperature geochemistry – application of radiogenic and stable isotopes to high-temperature geological systems and ore deposits (SoSe), 3 SWS
b) Practical – Application of mass spectrometry to radiogenic and stable isotope systems. Data reduction and treatment. (SoSe), 3 SWS

Prerequisites: Students in the MSc. program of Geosciences and related MSc. programs. Prior attendance of Sedimentary Geochemistry (MSc.) and Einführung in die Geochemie (Introduction to Geochemistry - 5. Semester BSc.) is strongly encouraged.

Learning outcomes: After successful completion of the module the students will

  • understand how isotope systems can be used to answer fundamental questions related to high-temperature geological 
  • know analytical techniques related to the acquisition of trace element and isotope data from magmatic, metamorphic and ore mineral samples 
  • be able to understand how to interpret these data to identify high-temperature processes occurring at various scales (e.g. from Earth’s crust and mantle to solar system planetary differentiation)

Content:
The lecture will provide an overview of the application of radioactive and stable isotopes to high-temperature geological systems, including igneous and metamorphic samples, as well as magmatic and hydrothermal ore deposits. In the first half of the Module, students will learn to apply data from classic radioactive decay systems (i.e. Rb-Sr, U-Pb, Sm-Nd, Lu-Hf isotopes) to a different rock types produced as a result of high-temperature processes (metamorphism, melting and crystallization). Students will be introduced to other radioactive systems (both extant and extinct) that have seen increasing application in Earth Sciences, like Hf-W, Pd-Ag, Re-Os, Pt-Os etc.. All these systems can be used to identify specific processes, which range in scale from crystallization of silicate and sulfide minerals from magmas, to core formation in planetary bodies.

The second half of the Module will deal with non-traditional stable isotope systems and how they can be used to complement data from radioactive decay systems in a variety of applications. These systems will include an overview of B, Si, Mo, Ti, V, Cr, and Fe isotopes to characterize processes and variables ranging from fluid-rock interaction, crustal recycling, redox conditions, mantle source compositions and many others.

The lecture will be complemented by a practical (Übung) where geochemical data from natural and experimental samples will be discussed and evaluated. Moreover, case studies involving different high-temperature geological settings will be discussed.

Teaching methods: Teaching and practical work (Exercises).

Mode of assessment: Written examination and practical work report or oral exam, depending on class size (written examination 90 minutes, oral examination 30 minutes).

Requirement for the award of credit points: 50 or more points in written examination, active performance in the laboratory course (weighing 80% written examination 20% practical course)

For further information please check the Vorlesungsverzeichnis

Term: 3. + 4. Sem.

Credits: 10CP

Module coordinator and lecturer(s): Dr. Christopher Beyer

Courses:
a) Lecture + Paper seminar - Petrology of the deep Earth (WS)
b) Lab course +Lecture – Experimental Petrology: The Earth in the laboratory (SS) 

Pre-requisites: Students in the MSc. program of Geosciences and related MSc. programs. Prior attendance of Mineralogy (BSc) and Thermodynamics (MSc) is strongly encouraged.

Learning outcomes: After completion of the module the students will understand
• the chemical and physical structure of the non-accessible Earth interior.
• the basic experimental methods to obtain information on phase assemblages and physical properties of rocks and minerals (e.g. melting curves, densities).
• how to treat and interpret experimentally derived data.
• The structure of scientific papers and how to read them.
• Writing experimental reports.

Content:
a) Petrology of the deep Earth
• The physical state of all relevant layers of Earth, from the deep crust to the Earth’s core.
• Major rock-forming phases, phase relations at high pressures and high temperatures.
• The effect of pressure, temperature and oxygen fugacity on phase relations and the equation of state of high-pressure phases (e.g. ringwoodite, bridgmanite).
• The role of chemical and physical heterogeneities.
• Volatile cycles, i.e. carbon, water, sulfur.
• Modes of chemical exchange between the different mantle layers. Discussing the question of layered vs. whole mantle convection.
• Reading and understanding research papers. b) Experimental Petrology: The Earth in the laboratory
• Theoretical background: What is a good experiment?
• Overview of devices that are used to simulate conditions of Earth’s interior – From the gas-mixing furnace to the laser-heated diamond anvil cell.
• Calibration of experimental devices.
• Dealing with measurement imperfections: Precision and accuracy.
• Attainment of chemical equilibrium.
• Hands-on experience in assembling and conducting experiments.
• Treatment of synthetic and real experimental data, error propagation and basic data fitting.

Mode of assessment:
ritten examination (90 minutes) or homework for course a) depending on the class size and a 15 minutes paper presentation. Experimental protocol for course b).

Requirement for the award of credit points: Mantle petrology Geosciences, MSc 82 50 or more points in written examination/paper presentation, active performance in the laboratory course and a grade of pass for the protocol.

For further information please check the Vorlesungsverzeichnis

 

Physical Geodesy

Term: 2. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Jonathan Bedford; Dr. Carlos Peña

Courses: Measuring Earth surface motions with InSAR and GNSS

Prerequisites: For students enrolled in MSc programs

Learning outcomes: 

  • After completion of the module the student will be able to:
  • Understand the principles of how GNSS and InSAR are used to measure surface deformation.
  • Understand and reproduce the static surface deformation induced by earthquake, volcanic, and anthropogenic processes using simple models.
  • Recognize the quality of solutions and diagnose sources of error in InSAR and GNSS measurements.
  • Recognize shallow (anthropogenic) and deep (solid-earth) signals in InSAR and GNSS data.
  • Recover earthquake, volcanic, and anthropogenic surface deformation signals from raw InSAR data using SNAP ESA software

Content: 
This course will provide an introduction to the principles of Earth surface displacements derived from Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) applied to tectonic, volcanic, and anthropogenic signals. Interpretations of the data will be taught with simple models such as elastic surface loading models, fault-slip dislocation models, and Mogi-source models.

For GNSS we will cover topics including reference frames, the earthquake cycle, volcanic signals, and seasonality. For InSAR, we will cover topics including SAR technology, amplitude and phase, the challenges in retrieving surface displacements due to tropospheric and topographic effects, and orbital errors.

Teaching methods: 
2 hours per week lecture. 2 hours per week practical in the computer lab.

Each week, we will introduce new concepts in the 2 hour lectures. This will be followed by a 2 hour practical in which students learn how to explore features of surface deformation data. Notably, students will learn how to use an InSAR processing software, SNAP, to process their own surface deformation maps from raw InSAR SLC data.

Types of examinations:Weekly quizzes during first 9 weeks: The best 5 results from 9 quizzes will be counted towards 60% of the final grade. 10% of the grade will be assessed from participation. 30% will come from a final and individual poster presentation that takes place at the end of the teaching semester. The preparation of these posters begins in week 9.

Prerequisites for earning the credit points:
Successful completion of weekly quizzes and poster.

 

For further information please check the Vorlesungsverzeichnis

Sedimentology and Quarternary Geology

Term: 1. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Dr. S. Riechelmann

Courses:
a) Isotope geochemistry Principles and applications (WiSe 1. Term)
b) Laboratory course isotope geochemistry (WS, two week block course, 3. Sem.)

Prerequisites: Students in the MSc programme Geosciences and related MSc programmes

Learning outcomes: After successful completion of the module the students

  • understand the principles of isotope geology including basics of decay systems and
  • geochronology as well as stable isotope geochemistry.
  • know analytical techniques related to traditional and non-traditional stable isotope
  • methods in sedimentary geology.
  • will be enabled to assess the application of isotope analytics in sedimentary
  • (diagenetic/ depositional/ alteration) processes, hydrology, (paleo)environmental and paleo(climate) research.

Content:

The lecture provides a basic overview on radiogenic isotope geology (radioactive dating methods) and stable isotope geology (traditional and non-traditional isotope systems) and their application in geological research. Complementary to the lecture the practical laboratory course aims at imparting the knowledge and know-how of selected (available) isotope techniques and methodologies in mass spectrometry.

 (a) Isotope Geochemistry - Principles and Applications Introduction to principles of isotopes, natural radioactivity and radioactive dating methods. Common radioactive dating methods (Rb-Sr, Sm-Nd, U-Th-Pb, Pb-Pb) are outlined and application examples are provided. In addition, U-series age determination methods (secular equilibrium and disequilibrium) and their application to sedimentary geology are introduced. The relevance of cosmogenic isotopes for research in applied geology, sedimentary systems and archaeology is taught and examples are given. The emphasis lies on the stable (traditional and so called non-traditional) isotope systems in sedimentary (carbonate) geology and hydrogeology. The isotope systems of H, N, C, O, S, Mg, Ca and Fe are outlined in detail. Their common use in (palaeo)environment and (palaeo)climate research, sedimentology, speleology, palaeontology and hydrogeology are discussed. The lecture is supported by exercises in the respective topics.

(b) Laboratory course Isotope Geochemistry With regard to the actual research topics and instrumental equipment selected isotope analyses are performed. In general, students work supervised on a complete procedure from hand specimen to result. From a polished hand specimen of a carbonate rock genetically different material is sampled by micro-drilling. Elemental composition is determined by ICP-OES and subsequently aliquots of the material are prepared for C/O and Sr isotope analysis and following measured. Aim is the evaluation of the state of preservation of fossil carbonate material, the degree of diagenetic overprint and an assessment of the geological age based on Sr isotope stratigraphy. In addition, the carbon isotope composition of dissolved inorganic carbon (DIC) from water samples are analysed in order to determine the origin (biogenic/abiogenic) of the water sources. Finally, the carbon isotope signature of CO2 of respiratory air is measured, which provides information on the diet of the respective person The lab course concludes with the final interpretation of the results and the evaluation of the geological significance of the data.

Teaching methods: Lecture, exercises and practical laboratory work

Mode of assessment:

Written exam for (a) and laboratory work report for (b) (written exam (a) 90 minutes

Requirements for the award of credit points: 50 or more points in written exam and laboratory work report, active performance in the laboratory course; (weighing 60% for (a) and 40% for (b)

For further information please check the Vorlesungsverzeichnis

Term: 1. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers

Courses:
a) Quartärgeologie (3 CP), 2 SWS
b) Quartärgeologie und geogene Risiken (2 days), 1 SWS

Prerequisites: Für Studierende im Master -Programm Geowissenschaften, die nicht den B.Sc. Abschluss Geowissenschaften an der Ruhr-Universität Bochum erworben haben

Learning outcomes:
Das Quartär hat in weiten Bereichen der nördlichen Hemisphäre deutliche Spuren hinterlassen. Die Sedimente des Quartärs sind vielfach nicht oder wenig verfestigt und haben dadurch besondere geotechnologische Eigenschaften, welche auch die zivilisatorische Nutzung beeinflussen. Ausgehend von einer Analyse des Klimas und der dadurch gegebenen Bedingungen werden die Liefergebiete, die Ablagerungsräume, die maßgeblichen Sedimente, deren Eigenschaften nebst deren Veränderlichkeit und die sich ausbildende Morphologie vermittelt. Im Rahmen des Kurses werden die speziellen Bedingungen, Prozesse und Ablagerungsräume des Pleistozäns und Holozäns besprochen; initial werden die alpidische Orogene und die tertiären Ablagerungsräume umrissen, um die Ausgangssituation für das Quartär Deutschlands zu definieren. Das Erkennen dieser Sedimente ist für die Entwicklung von Untergrundmodellen unabdingbar. Ebenso gehen von den pleistozänen Sedimenten und den glazial geprägten Landschaften geogene Risiken aus. Im Rahmen der Geländeübung werden beispielhaft quartäre Formungen und deren Sedimente beschrieben und die Ansprache der Sedimente geübt. In dem Zusammenhang werden die Eigenschaften der Sedimente besprochen und die daraus sich ergebenden geogenen (sowohl natürlich aber auch anthropogen induzierten) Risiken abgeleitet. Nach erfolgreichem Abschluss des Kurses kennen und erkennen die Teilnehmerinnen und Teilnehmer die wichtigsten quartären Ablagerungsräume und deren Sedimente, kennen sie die grundlegenden Eigenschaften der quartären Sedimente und verstehen die Teilnehmerinnen und Teilnehmer die grundlegenden Mechanismen der Gletscher. Die Teilnehmerinnen und Teilnehmer können exemplarisch pleistozäne Formungen erkennen und die Sedimente ansprechen. Darüber hinaus kennen sie die wichtigsten von den quartären Formungen ausgehenden Georisiken und sind mit den wesentlichen Prozessen vertraut.

Content:
Klimaentwicklung seit der Kreide; Bildung der Alpen; Tertiär in Deutschland als quartäre Basis; Gletscherbildung und -mechanik; glaziale Erosion und Transport; Ablagerungen und Ablagerungsformen; Eigenschaften der Sedimente; Die Kaltzeiten in Nord- und Süddeutschland; Glaziale Sedimentkörper, Sedimentansprache, Einflussfaktoren geologischer Prozesse; geogene Herausforderungen; Georisiko Mensch.

Teaching methods: Vorlesung mit integrierten Übungen und Diskussionen

Mode of assessment: Modulklausur 

Requirement for the award of credit points: Ausreichende Bewertung der Klausur, des Kurzprotokolls und einer Hausarbeit

For further information please check the Vorlesungsverzeichnis

Tectonics and Resources

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Annika Dziggel (Ph.D)

Courses:
a) Pre-field course seminar, 1 SWS
b) Field course, 10 days

Prerequisites: -

Learning outcomes: Upon successful completion of this module, the students 

  • know how to document and interpret structural and petrological data.
  • are able to integrate field observations with theoretical knowledge in tectonics and/or economic geology

Content:
The content and exact duration of the field course depend on the field area, which is variable each year (Scotland, South Africa, ...). The field course is preceded by a seminar. The aim of this field course is to train the student's field skills in tectonics and economic geology, and to combine theoretical knowledge with field observations. The field course may include small mapping projects and visits to open pit and underground mines.

Types of courses: Field trip, seminar.

Types of examinations: Report.

Requirements for the award of credit points: Participation in the field trip and seminar. Passing grade for the report.

For further information please check the Vorlesungsverzeichnis

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Dr. Olaf Podlaha

Courses:
a) Petroleum geology I (Erdölgeologie I), 2 SWS
b) Petroleum geology II (Erdölgeologie II), 2 SWS
c) Field trip (Geländeübung), 1 day

Prerequisites: Students enrolled in a Geosciences Master-Program

Learning outcomes: The module consists of a winter-term lecture (a), a summer-term lecture (b) and a summer term field trip (c).

Module part a):
The assessment center exercise aims at communicative interaction and gaining/deepening „soft-skills“ (team work, resilience to challenging time vs. content preparations, concept selection, short presentation, facing a managerial board, staying in control of a meeting, addressing challenging questions constructively and authentically). Students gain academic level knowledge and applied competences to gather, interpret and rank such reservoirs:

  • in their context of primary depositional environment, its fundamental controls on global, regional and local scale.
  • using systemically relevant geogenic alteration factors with positive and/or negative consequences on the reservoir properties and their economic relevance.
  • executing analysis, interpretation and assessment of pore fluids with respect to their geo-heritage and economic value.

Module part b): lecture in petroleum geology II:
building on a) and taught for deepening regional geological knowledge with respect to regions with economically relevant subsurface reservoirs. Based on published data, gathering, interpreting and assessing subsurface data forms the core of the student learning. The repetitive evaluation of different regions in the context of the subsurface systemic concept learned in petroleum geology I enables the acquisition of skills to consistently apply prior knowledge and build portfolios differentiating between analogous and unique geological systems. The students gain/learn:

  • systemic competencies of applying the competences of (a) in a different regional geo-context.
  • global and regional geological knowledge, analogous occurrences of subsurface architectures versus unique settings and their characteristics.
  • risks and opportunities derived from analogous versus unique settings, specifically with respect to economic exploration, development and production of the subsurface reservoir.
  • risk minimization in previously unknown regional settings through the use of analogues in the competency context of analysis – recollection – application – assessment.

Module part b) is supplemented by an offering of a ½ day assessment center exercise.  Participation is voluntary.

Module part c), field trip:
Conducted in the border region of the Netherlands, Lower Saxony and North Rhine-Westphalia. The field trip aims at acquiring the practical skills to combine prior knowledge gained in other field trips, prior regional geological  knowledge and the economical geological skills of the lectures. As a result, a new/adjusted/different/professionally relevant assessment of the area is achieved and learning for later work life is performed.

  • The students learn the practical relevance of the theoretical systemic knowledge acquired in a) and b).
  • The students learn to integrate prior knowledge of fieldwork within the context of subsurface reservoir interpretation.
  • The students gather, describe, assess and interpret the outcrops based on rock samples taken.
  • The students integrate for each outcrop the new insights with those from previous outcrops.
  • They form, then deepen or revise hypothesis and build a regional to subregional interpretation framework. They achieve a systemic and economic assessment of existing subsurface reservoirs in the region and their past, current and future utilization.

Digitalization: The relevance and importance of geological modeling of sedimentary basins, subsurface porous network flow modeling and economic assessments are introduced with respect to exemplary software packages. Digital interpretation methods, based on prior manual preparation of data and geological thinking, are taught. The importance of AI and ML (artificial intelligence/machine learning) methods for the consistent processing of large geological data sets, specifically in the context of subsurface reservoirs are discussed. Example data sets and scenarios are used in both economic and geotechnical exercises. Software is not being developed in this course.

Content:
One lecture date is used for a practical in-field exercise within the vicinity of the University. Interactively the acquired competences are applied, practiced and thereby
deepened.

Module part a), lecture in petroleum geology I:
Presentation, questioning and feedback methods in English language - The petroleum system and its controls - Sediments and facies - Reservoir petrology, petrophysics - Pore fluids - Reservoir fluid properties through time - Modelling - Assessment center (optional)

Petroleum geology II:
Repetition: Petroleum system concept and controls; Economic and regional geology

Field trip:
Petroleum System Emsland ; Bad Bentheim: sediments, stratigraphy, geological overview; Outcrops; Production units, history, economic importance; Composing an integrated geo-economic concept on the petroleum systems of the Emsland, integrated interpretation

Teaching methods: Lecture, integrated exercises and field trip

Mode of assessment: One final written exam on (a) and (b) lectures combined, report on the field trip

Requirements for the award of credit points: Written exam: Sufficient level result (“Ausreichend”), successful participation in the field trip

For further information please check the Vorlesungsverzeichnis

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Annika Dziggel (Ph.D)

Courses:
a) Metallic mineral deposits, 2 SWS
b) Non-metallic mineral deposits, 1 SWS
c) Research project on ore deposits, 3 SWS

Prerequisites: -

Learning outcomes: Upon successful completion of this module, the students

  • have an in-depth understanding on the processes of formation of metallic and non-metallic mineral deposits and their different geodynamic settings.
  • are able to identify and document the mineralogical and textural characteristics of a wide range of deposit types.
  • know how to evaluate the conditions and processes of element enrichment using a variety of analytical techniques as well as whole rock and mineral-chemical data.

Content:
a) Metallic mineral deposits:
Introduction to ore forming processes, genetic concepts and classifications. Conceptual difference between mineral resources and ore reserves; economic aspects. Magmatic(-hydrothermal) ore forming systems: ortho-magmatic deposits, deposits related to granites, Cu-porphyries, ore deposits in mid-ocean ridges and ophiolites. Hydrothermal ore-forming systems related to metamorphic processes; ore deposits in supergene and sedimentary settings.

b) Non-metallic mineral deposits:
Introduction into the use and properties of industrial minerals, earths and rocks, salt and gemstones (diamond only).

c) Research project on ore deposits:
This course emcompasses the guided independent study of well-characterized hydrothermal ore deposits using hand specimens, thin- and polished sections and a range of whole rock and mineral-chemical data. This course introduces students to research-oriented learning and is aimed at preparing the students for their Master projects.

Types of courses: Lectures, practicals, project work in small teams

Types of examinations: Written examination on the contents of courses a) and b); extended abstract and oral presentation in c).

Requirements for the award of credit points: Passing grade for the written examination and extended abstract/oral presentation.

For further information please check the Vorlesungsverzeichnis

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Christophe Pascal

Courses:
a) Lectures, seminars, exercises in structural geology, 2 SWS
b) Special methods in structural geology, 2 SWS
c) Structural geology field camp, 2 SWS

Prerequisites: Attendance is compulsory in all courses of this module!
For students enrolled in the MSc curriculum

Learning outcomes: The purpose of the module is to make the students familiar with advanced concepts in structural geology and tectonics. The theoretical and practical teaching and training offered in the module is highly relevant for industry, in particular for exploitation of mineral and water resources. After achievement of the module the student is

  • is acquainted with different applications of structural geology.
  • knows the mechanisms of tectonic fracture and fluid transfer,
  • is able to elaborate a coherent geological model from field data.

Content: The module is organised in three courses, progressing from general aspects in structural geology to specific aspects on tectonic fractures. Finally, a field camp consolidates the knowledge acquired in the classroom.

a) Lectures, seminars, exercises in structural geology
The aim of the lecture is to consolidate and deepen fundamental aspects in structural geology. During the two first sessions basic notions are recalled by the instructor. The following sessions consist of oral presentations by the students. The topics to be presented are selected by the participants according to a list of scientific papers proposed by the instructor. In addition, the writing of an essay following the oral presentation is required.

b) Special methods in structural geology
This lecture addresses various aspects of tectonic fractures. Firstly, the different types of fractures are introduced in detail with emphasis to their identification and correct interpretation in nature. In the following, fundamentals of fracture mechanics are presented in relation to specific characteristics of natural fractures. The discussion is then expanded to include the impact of fractures on fluid and heat transfer, in particular, and their relevance for operation of geo-energy systems.

c) Structural geology field camp (8 days)
The exercise involves the structural/geological mapping in fine detail of selected areas using traditional techniques and tools (i.e. compass, hammer, lens…). As such the field camp aims to strengthen field work experience and sharpen geologist skills. In the course of the writing of the report, the student will learn how to analyse field data and how to extract from them a coherent geological synthesis.

Teaching methods: Lectures, exercises and training in the field

Mode of assessment: Lectures: written exam (2h), oral presentation (20-30 mins), essay (30 p.); Field course: report

Requirements for the award of credit points: Positive evaluation of the exams and successful participation in the field course

For further information please check the Vorlesungsverzeichnis

Weitere Informationen

Studium

Applied Geothermics

A new binational double-degree master’s programme at the Ruhr University Bochum and the Universidad Nacional San Juan in Argentina

 

Forschung im Institut für Geologie, Mineralogie und Geophysik

Forschung

Hier erfahren Sie alles über die Forschungsarbeiten der Arbeitsgruppen der IGMG