Study

M.Sc.: Module handbook and Study Plan

Liste der Module nach Thema / List of Modules according to theme

 

HINWEIS: Die Modulliste für alle Module auf dieser Seite ist noch in Bearbeitung, bitte informieren Sie sich über den Link zum Module Handbook Geosciences

NOTE: The module list for all modules shown on this page is still under construction, please check the link to the Module Handbook Geosciences for up to date information. 

Analytical methods in Earth Sciences

Term: 2. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Dr. René Hoffmann and Dr. Niels Jöns

Courses:
a) Lecture: Electron beam microanalysis, 2 SWS
b) Practical exercises on electron beam microanalysis (SEM, CL, EMPA), 2 SWS

Prerequisites: -

Learning outcomes: After completion of this module the students

  • understand the applicability of electron beam microanalytical methods.
  • know different kinds of methods (SEM, EMPA, TEM, CL, Auger electron)
  • are able to evaluate the strengths and limitations and perform an analysis of errors.
  • gained practical experience of diverse electron beam analytical tools.

Content:
a) Lecture
Overview of the use of electron beam methods for the analysis of solid materials. Electron – matter interaction (elastic scattering, inelastic scattering, production of X-rays, Auger electrons, and Cathodoluminescence). Construction principles and working of different instruments (TEM, SEM, EMPA, STEM, CL microscopes). Functionality of different parts of the instruments such as pumps, electron optic, generation of electron beams). Analytical methods and interpretation of analytical results (EELS, EBSD, electron optical images, EDX, WDX, diffraction images).

b) Practical exercises
Familiarization with the equipment and their parts. Coating a sample with C or Au. Inserting and extracting a sample holder from the sample chamber under vacuum. Adjusting the electron beam. Navigation on the sample. Use of different detectors (SE, BSE, CL, EBSD) for imaging. Experiments on the effects of accelerating voltage and sample current. Qualitative analysis and identification of minerals with the help of the energy dispersive detectors. Collecting wavelength dispersive spectra in the electron microprobe. Comparison of results from EDX and WDS. Production of element distribution maps. Generation of crystallographic orientation images (SEM). Conceiving a quantitative analytical program. Determination of peak and background positions, choice of spectrometers, standard materials, counting times and beam parameters (EMPA). Evaluation of the analyses through the calculation of mineral formulae and estimate of errors.

Teaching methods: Lectures and practicals.

Types of examinations: Final examination on the lecture part. Passing this exam is a pre-requisite for participation in the practical exercises.

Prerequisites for earning the credit points: Passing grade in the exam. Active participation in the practical demonstrated through a detailed record of experiments in the lab book.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. + 3. Sem (SS and WS)

Credits: 5 CP

Module coordinator and lecturer(s): Dr. Thomas Fockenberg

Courses: 

a) Methods of rock analysis 

b) Practicals on rock analysis

Prerequisites: -

Learning outcomes:

After completion of the module the students

  • know methods to quantify the chemical content of solid materials.
  • can make qualified decisions about which analytical method is best suited for a given analytical problem.
  • are able to critically evaluate the results, to analyze possible sources of errors, and their influences on the results.

Content:

  • Lecture in methods of rock analysis: Fundamentals of electromagnetic rays and interaction with matter. Atomic-Absorption Spectroscopy (AAS), X-ray fluorescence spectroscopy (XRF), coulorometry, potentiometric methods, nuclear methods (e.g. RBS, NRA), general principles of mass spectrometry and different kinds of mass spectrometry, laser-ablation inductively coupled mass spectrometry (LA-ICP-MS), secondary ion mass spectroscopy (SIMS)
  • Sample preparation methods
  • Practicals on rock analysis: complete chemical analysis of a silicate rock will be carried out, and the errors and uncertainties in the results will be evaluated. 

Teaching methods: Lecture, practicals

Types of examination(s): Written report including the theory behind the operation of the devices, a brief description of the practical experiment and presentation of the results with an estimation of the errors, a discussion of the results.

Pre-requisites for earning the credit points: Attendance in the practicals and a passed graded report.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 3rd semester (every winter semester), duration: 1 semester

Credits: 5 CP

Module coordinator and lecturer(s): Dr. Stephan Schuth

Courses:

a) Methods of LA-ICPMS (Lecture, 2 SWS)

b) Practical course in LA-ICPMS (Practical course, 2 SWS as a block course of 4 days)

Prerequisites: The module is open to students with a BSc in Earth Sciences. Successful completion of the module "Analytical methods in rock analysis" is recommended.

Group size: Maximum of 10 students

Learning outcomes:

Upon successful completion of this module, the students

- have an in-depth understanding of the principles of laser ablation and inductively coupled plasma-mass spectrometry methods (SF-, TQ-, MC-ICPMS).

- are able to choose the best-suited method for a given geoscientific research question.

- can critically evaluate the results, calculate the analytical uncertainty, and identify possible sources of analytical problems.

Content:

a) Lecture in methods of LA-ICPMS:

1) Laser ablation: principles of laser radiation, analytical approaches (profile, spot, 3D analyses, mapping), interaction of the laser beam with solid matter, combination of LA-ICPMS and LIBS, split-line technique.

2) Mass spectrometry: principles of (Inductively Coupled Plasma-) Mass Spectrometry, advantages and drawbacks of different mass spectrometer designs (e.g., SF, TQ, MC; reaction cell, high- vs. low-resolution), data evaluation (incl. analytical uncertainty, counting statistics).

b) Practical course in LA-ICPMS:

The students learn the basics about handling and tuning of a modern laser ablation system connected to a state-of-the-art triple-quadrupole-ICP-mass spectrometer. Analyses target a large variety of solid materials like glasses, alloys (e.g. welding rods, coins), mineral phases (e.g., zircons, olivines, garnets, …), and samples from different ore deposits (e.g., hydrothermal settings). Age determinations of selected zircons (U-Pb ages) and/or garnets (Lu-Hf ages) are included, and calculation and evaluation of the age will be part of the practical course.  

This course is especially welcoming students who are interested in master projects that evolve around in-situ analyses of solid samples (e.g., glasses, minerals, alloys, small archaeological artefacts).

Types of courses: Lectures, practicals and project work in small teams

Types of examinations: Written exam on theoretical aspects of laser systems and mass spectrometers. Written practical report about the analytical procedure (and its challenges), and presentation and evaluation (including error calculations) of the results.

Requirements for the award of credit points: Attendance in the practical course and a passing grade for the written report.

Other information: Literature: Gill: Modern Analytical Geochemistry - Skoog & Leary: Instrumentelle Analytik - Sylvester: Laser ablation ICP-MS in the Earth Sciences - Thomas: Practical Guide to ICP-MS

 

For further information please check the M.Sc. Module Handbook Geosciences

Applied Geology

Term: 2. + 3. Sem.

Credits: 8 CP

Module coordinator and lecturer(s): Prof. Dr. Stefan Wohnlich

Courses:
a) Fissured rock hydrogeology, 2 SWS
b) Climate change and water resources, 2 SWS
c) Well construction, 2 SWS

Prerequisites: For students in MSc programs

Learning outcomes:

Upon completion of the module, students will be able to demonstrate insights into various aspects of applied hydrogeology and describe interrelationships. They

  • deepen their knowledge in the field of fractured groundwater significantly beyond the level of the basic lectures.
  • are able to characterize and evaluate globally important water resources with regard to occurrence, genesis, use and sustainable management.
  • assess the impact of climate change on water resources and their management.
  • gain in-depth geotechnical and (hydro)geological knowledge of the opportunities and challenges of using and investigating groundwater through well construction, including in unconsolidated rock units. 

Content:

a) Fissured rock hydrogeology

Basics, terms and methods of describing fractured aquifers including occurrence and exploration of bedrock aquifers (magmatic, metamorphic, sedimentary), qualitative and quantitative aspects of water use from fractured aquifers.

b) Climate change and water resources

Fundamentals and concepts of climate change and methods to study its influence on water management including collection, presentation and interpretation of climate data, climate models, political climate targets and approaches to their implementation; global, regional and local impact on quality and quantity of usable water resources; methods of climate adaptation.

c) Well construction

Basics, concepts and methods of well construction including state of the art in science and technology, challenges and limitations, methods under different geological boundary conditions, global significance and development, approaches for different types of use.

Teaching methods: Lectures with accompanying exercises.

Mode of assessment: Written exam on the contents of the courses a), b) and c); duration 120 minutes at the end of the WS.

Requirement for the award of credit points: Passed module examination; passed ungraded lecture in a); participation in, and submission of at least 70% of each of the exercises in b) and c).

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. + 2. Sem.

Credits: 8 CP

Module coordinator and lecturer(s): Prof. Dr. Stefan Wohnlich

Courses:
a) Shallow geothermal energy, 2 SWS
b) Deep geothermal energy, 3 SWS

Prerequisites: For students in Master programs

Learning outcomes: After completion of the module, the participants will

  • be able to dimension simple planning examples for geothermal plants and to determine the necessary parameters.
  • understand various sub-areas of geothermal energy (shallow and deep geothermal energy) as well as the different types of geothermal systems (hydrothermal, petrothermal, open and closed systems).
  • understand the theoretical background and current calculation methods, know the legal principles and guidelines for the construction of geothermal plants and boreholes. The deep geothermal energy course deals with physical heat transfer processes at greater depths and the associated processes that are important for the optimal energy yield of such systems.

Content:
a) Shallow geothermal energy:
General insight into shallow geothermal energy: Overview of geothermal energy and energy in Germany, functioning of heat pumps, guidelines and legal bases, open and closed systems, dimensioning of geothermal probe systems, insight into seasonal heat reservoirs.

b) Deep geothermal energy:
Fundamentals and methods of deep geothermal energy: Potentials and uses in Germany and internationally, geophysical exploration and characterisation of deep geothermal reservoirs.

Teaching methods: Lectures with accompanying exercises.

Mode of assessment: Written examination on the contents of courses a) and b); duration: 120 minutes at the end of the summer semester.

Requirement for the award of credit points: Passed module examination; Participation in, and submission of at least 70 % of the exercises in a) and b)

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. + 2. Sem.

Credits: 12 CP

Module coordinator and lecturer(s): Prof. Dr. Stefan Wohnlich

Courses:
a) Groundwater hydraulics, 4 SWS
b) Hydraulic groundwater modelling, 4 SWS

Prerequisites: For students in Master programmes

Learning outcomes: At the end of the module, participants will

  • be able to describe and evaluate groundwater flow and conservative mass transport in the subsurface.
  • know methods of experimental investigation and determination of hydraulic parameters under different boundary conditions, and can derive and evaluate these mathematically.
  • be familiar with the evaluation and interpretation of groundwater hydraulic parameters and use them to deal with classical hydrogeological problems.
  • be able to use numerical modelling approaches to effectively model groundwater flow based on existing hydrogeological information.
  • be in the position to estimate and describe the quality and limitations of hydraulic models and use them to predict future situations.

Content:
a) Groundwater hydraulics:
- Methods for the collection and evaluation of hydraulic parameters (Darcy-tests, pump tests, Slug&Bail tests)
- Conveyance of knowledge about groundwater flow and the construction of groundwater level plans
- Execution and evaluation of pumping tests by means of graphical and analytical solutions
- Practical tasks for lowering the groundwater level through well systems in excavation pits or calculation of well yield

b) Hydraulic groundwater modelling:
- Teaching of knowledge and methods for understanding and evaluation of mass transport processes in    groundwater
- Methods for quantifying the subsurface (geostatistical approaches)
- Knowledge transfer for the modelling of mass transport with regard to the structure of a model, boundary conditions, advantages and disadvantages of models and how modelling programs work
- Visualization and interpretation of model results

Teaching methods: Lectures with accompanying calculation exercises; Software exercises (FeFlow) on the PC

Mode of assessment: Written examination on the contents of the courses ‚Groundwater hydraulics‘ and ‚Hydraulic groundwater modelling‘; Duration: 120 minutes.

Requirement for the award of credit points: Passed module examination.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 3. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Stefan Wohnlich (Lehrtransfer von Geothermie Zentrum Bochum)

Courses: Drilling 1; Exercises in drilling , 5 SWS

Prerequisites: For students in Master programmes

Learning outcomes:

The course presents an introduction to drilling technologies, focussing on shallow, near-surface applications like geothermal borehole heat exchangers, water and monitoring wells, geotechnical as well as environmental investigation. Dry, augering and mud drilling techniques will be compared and discussed, as well as sampling and coring for different applications.

  • Introduction to geotechnical investigations and selected standards.
  • Rotary drilling with direct circulation including tooling.
  • Rotary drilling with indirect circulation including tooling, applications, air lifting. 
  • Mud losses, artisean conditions while drilling, cementing. 
  • Water and monitoring wells, well testing, sampling. 
  • Shallow geothermal, borehole heat exchanger systems.
  • Environmental Direct Push sampling, coring, on-site analysis.

Content:

  • Basics of shallow drilling. 
  • Coring and cuttings. 
  • Geotechnical exploration, probing and analysis (DIN 4021 / EN ISO 22475).
  • Foundation work and drillling. 
  • Water well drilling and completion. 
  • Shallow geothermal drilling, completion and applications including standard W 120. 
  • Quality assurance and control of shallow geothermal BHE systems.
  • Teaching methods: Classroom and hands on lectures, field work on the rig and its auxiliary equipment, laboratory experiments, practical case studies.

Mode of assessment: Written examination (60 Min.)

Requirement for the award of credit points: According to current examination regulations.

For further information please check the M.Sc. Module Handbook Geosciences

Term: M.Sc.

Credits: 7 CP

Module coordinator and lecturer(s): Prof. Dr. S. Wohnlich (Modulbeauftragter), Assistants in Hydrogeologie in cooperation with other lecturers of GMG.

Courses: Field Courses in applied geology in various hydrogeological settings (Europe, South America, ...)

Prerequisites: For students in the Masters Programm Geosciences with the focus in Applied Geology, Sedimentology, Mineralogy, and Crystallography

Learning outcomes: The learning aims are dependent on the topics of the field course. The field courses combine aspects of applied Geology (Hydrogeology, Engineering Geology, Geothermal Energy, Economic Geology) with general geological knowledge like Structural Geology, Sedimentology, Geophysics etc. Generally, the aim is to give the students the possibility to combine knowledge from classes and laboratory exercises with field observation in order to construct a sound Geological Model, that can be applied to practical purposes like Mining, Engineering of Geothermal Applications. After the successful attendance of the module the students are able to understand the complexity of geological settings.

Content: Depends on the field area.

Teaching methods: Seminar before the field trip, discussions in the field, planning and independent work in the field.

Mode of assessment: The module is graded on the basis of the evaluation of the lecture and the report from the pre-seminar and the submitted sketches and reports. Participation in the fieldwork. The pro-seminar consists of a lecture on selected topics (10-15 minutes) and submission of an abstract of the talk (1-2 pages). Presentation of 4-5 sketches of the field settings (done in the field and refined in the evenings in the field camp). The original copy as well the refined copy are to be submitted.

Requirement for the award of credit points: Active participation in the field work, discussion and seminars. Inability to participate in more than 33% of the field days may be excused only on very well-founded medical
grounds; otherwise such absence will lead to a failing grade in the module.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. Sem. (recurring every SS)

Credits: 12 CP

Module coordinator and lecturer(s): Prof. Dr. Wohnlich

Courses:

a) Tracer techniques in hydrogeology (3 SWS)

b) Hydrogeological field camp (3 SWS)

c) 3 x 1 day field trips (2 SWS)

Prerequisites: For students in MSc programs.

Learning outcomes:

Upon completion of the module, students are able to

  • perform, evaluate and interpret hydrogeological field tests independently.
  • apply the concept of using organic substances as tracers for the investigation of hydraulic compounds in the subsurface.
  • develop and design a tracer experiment using fluorescent dyes.
  • submit an application to the Environmental Protection Agency as required for a submission.
  • actually carry out a tracer experiment and evaluate and interpret the data collected in the process.
  • conduct a wide variety of hydrogeological experiments.
  • transfer their knowledge from the lecture hall to real-world problems.

Content:

a) Tracer techniques in hydrogeology

Basics, terms and methods of tracer hydrology including types and properties of tracers, solubility, sorption, planning and execution of tracer experiments: Input, sampling and measurements, recovery and interpretation of passage curves, derivation of hydraulic parameters.

(b) Hydrogeological field camp

Performance of hydrogeologic field methods including pumping tests, seepage tests, discharge measurements, sampling and hydrochemical field laboratory, drilling and sediment retrieval, groundwater leveling plan preparation; evaluation and interpretation of collected data.

(c) 3 x 1 day field trips

Three one day field trips on the local hydrogeology and related problems.

Teaching methods: Lectures with accompanying calculation exercises and field exercises. 

Mode of assessment: Written reports and calculations.

Requirement for the award of credit points: Active participation in the field work, discussion and seminars. Inability to participate in more than 33% of the field days may be excused only on very well-founded medical grounds; otherwise such absence will lead to a failing grade in the module.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Stefan Wohnlich (Lehrtransfer von Fakultät Bauingenieurwesen)

Courses: Siedlungswasserwirtschaft, 3 SWS

Prerequisites: Für Studierende in Master-Programmen

Learning outcomes:

Studierende sind nach Beendigung des Moduls in der Lage,

  • Methoden, Zusammenhänge und Einflüsse im Bereich der Siedlungswasserwirtschaft zu beschreiben und zu bewerten.
  • kennen die grundlegenden hydrologischen Prozesse in natürlichen und anthropogenen Systemen und Ansätze zu deren Untersuchung.
  • kennen die komplexen Interaktionen des Menschen mit der Hydrosphäre.

Content: Grundlagen, Begriffe und Methoden der Siedlungswasserwirtschaft: natürliche hydrologische Systeme und deren Erkundung, anthropogene Nutzung von Wasserressourcen: Wassergewinnung, Wasseraufbereitung, Wasserspeicherung, Wasserförderung und –verteilung, Betriebswasser, Abwasser und Klärschlamm, Regenwasserbewirtschaftung, Flächenversiegelung.

Teaching methods: Vorlesungen mit begleitenden Übungen

Mode of assessment: Schriftliche Klausur über die Inhalte der Lehrveranstaltungen, Dauer 90 Minuten am Ende des SS.

Requirement for the award of credit points: bestandene Modulprüfung; Teilnahme an, und Abgabe von jeweils mindestens 70 % der Übungen.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Dr. Andrea Hachenberg

Courses:

a) Isotope hydrogeochemistry (lecture), 2 SWS

b) Isotope hydrogeochemistry (exercise), 2 SWS

Prerequisites: For students in Master programs

Learning outcomes: Upon completion of the module, students will be able to grasp the importance of isotope ratios for the study of the origin of water and dissolved constituents in the hydrological cycle. They are familiar with a wide range of relevant isotope systems that are widely used in the fields of hydrogeochemistry and environmental geosciences for a wide variety of problems. They participants can use radiogenic isotopes for dating, determination of residence times, flow path of water, as tracer and for designation of origin. Stabile isotopes will be used for geothermometer, determination of origin of water, elements, gases and pollutants, redox reactions and process determination. You will get familiar with analytical methods for sampling and determining of isotope data, and be able to process and evaluate them. The lecture is complemented by course-related exercises based on real case studies.

Content:

a) Isotope hydrogeochemistry (lecture): Basics, terms and methods of isotope hydrogeochemistry including stable, radioactive and radiogenic isotopes, relevant isotope systems and ratios, fractionation processes, their applications and analytical methods, possibilities of interpretation in hydrogeological and hydrogeochemical questions.

b) Isotope hydrogeochemistry (exercise): Application of theoretical background in guided exercises on real case studies.

Teaching methods: Lectures with accompanying exercises.

Mode of assessment: Written exam on the contents of the courses a) and b); duration 60 minutes. Evaluation of the exercises.

Requirement for the award of credit points: Passed written module exam; Participation in, and submission of at least 70% of each of the exercises.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 3. Sem.

Credits: 9 CP

Module coordinator and lecturer(s): Dr. Andrea Hachenberg

Courses: 

a) Environmental forensics

b) Hydrogeochemical modelling

Pre-requisites: Registered in Master programs

Learning outcomes: 

(a) Anthropogenic use of groundwater is often associated with a contamination of the same. It is becoming increasingly relevant to identify the polluters of such contamination. For this purpose, the emerging field of environmental forensics offers some methodological possibilities, which the participants will learn to know and apply. Further, the students will learn about the recent development of reactive tracers for geothermal applications but also for studying subsurface processes. The participants will learn, which tracers are useful for which problem by means of examples.

(b) Hydrogeochemical modeling allows the students to gain a deeper understanding of the hydrogeochemical processes discussed and how to represent them in model form. They understand the added value of numerical equilibrium modeling for hydrochemical data, and can describe, evaluate, and predict the effects of different frameworks on solute distribution.

Contents: 

a) Environmental forensics

Basics, terms and methods of environmental forensics including polluter pays principle and legal basis, hydrochemical proxies and indicators, possibilities of using reactive tracers, international and national case studies.

b) Hydrogeochemical modelling

Basics, terms and methods of hydrogeochemical modeling including models and databases, simulation of hydrochemical equilibrium reactions, mixing reactions, kinetically controlled reactions, inverse modeling, 1D reactive solute transport and isotopic fractionation,  graphical presentation of the results with various programs.

Teaching methods: Lectures with accompanying exercises, software exercises (PhreeqC) on the PC.

Mode of assessment: Written exam on the contents of the courses a) and b); duration 90 minutes. Evaluation of the exercises in b.

Requirement for the award of credit points: 

Passed written module exam.

Participation in, and submission of at least 70% of each of the exercises in b).

Term: 1. Sem.

Credits: 12 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Licha

Courses:
a) Inorganic hydrochemistry, 4 SWS
b) Organic hydrochemistry, 4 SWS

Prerequisites: For students in Master programs

Learning outcomes: At the end of the module, participants will

  • understand the role of chemical processes in water-rock interactions. The fundamentals of thermodynamics enable them to recognize and evaluate hydrogeochemical equilibrium and imbalance states of different reaction types
  • understand the hydrogeochemical basics, terms and methods
  • be able to classify organic substances and pollutants in the subsurface
  • know the relevant structures and properties, and thus understand their behaviour and mobility of contaminants in the environment.

Content:
a) Inorganic hydrochemistry:
Fundamentals, concepts and methods of inorganic hydrochemistry: law of mass action, concentration and activity, solubility and saturation, types of hydrochemical reactions, equilibrium and imbalance, sorption, toxicity and regulatory provisions

b) Organic hydrochemistry:
Fundamentals, concepts and methods of organic hydrochemistry: classes of substances, structures and properties of organic substances, phase formation, volatility, degradation, solubility, sources and legal regulations, cases of contamination and approaches of remediation

Teaching methods: Lectures with accompanying calculation exercises

Mode of assessment: Written examination on the contents of a) and b); duration: 120 minutes at the end of the winter semester.

Requirement for the award of credit points: Passed module examination; Participation in, and submission of at least 70 % of the exercises in each a) an b)

For further information please check the M.Sc. Module Handbook Geosciences

Earthquake physics and processes

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington

Courses: Earthquake seismology and the seismic cycle, 4 SWS

Prerequisites: The module grade will be based on the oral and written presentation of the term project.

Learning outcomes:

After successful completion of the module, students will be able to

  • understand and explain earthquake source parameters such as seismic moment, magnitude, static stress drop, radiated energy, and spectral corner frequency.
  • understand how earthquake source parameters are measured and quantified, such as via fault plane solutions, moment tensors, directivity.
  • understand and explain empirical earthquake relations, such as the Gutenberg-Richter magnitude-frequency relation, Omori’s Law.
  • understand the basics of seismic signal processing and its applications to studies of earthquakes.
  • understand and explain the relation between earthquake occurrence and friction on fault surfaces, as well as fracture mechanics models of earthquakes.
  • understand and explain the earthquake cycle and the occurrence of intraplate and interpolate earthquakes.
  • relate earthquake triggering and induced earthquakes to tectonic and stress loading, and identify possible earthquake triggers.
  • understand and describe physical characteristics and underlying mechanisms of the various types of volcanic seismic signals observed at active volcanoes.

Content: Topics included in the course include: Earthquake source studies (focal mechanisms, moment tensors, directivity, seismic moment, source spectra and scaling laws, energy partitioning, stress drop and radiated energy), earthquake statistics, fundamentals of seismic signal processing, fracture mechanics and its relation to rate-state friction, fault friction and the effects of temperature and pressure at depth, earthquake cycle deformation and the spectrum of fault slip, inter- and intraplate earthquakes, fault drilling, volcanic earthquakes, and triggered and induced earthquakes. 

All lecture materials are digitally available via the course Moodle, and student projects are strongly encouraged to incorporate digital data processing. Lectures and paper discussion occur in English.

Teaching methods: Lecture period of 1,5 hours/week followed by paper discussion of 1,5 hours/week.

Mode of assessment: Final report weighted 70% for the written component (with a 10-week working period), with the remaining 30% weight being placed on the oral presentation the last week of the lecture period. Paper discussion/exercises will be evaluated based on participation, and must be completed with a passing grade of 60% in order to submit the final report. Final reports may be completed in German if desired.

Requirement for the award of credit points: Passing grade for the paper discussion entitles the course participant to submit the Module Exam (term project). Term project presentation with a passing grade (written and oral parts will be combined for a total number of points).

For further information please check the M.Sc. Module Handbook Geosciences

Term: WS/SS (recurring every semester).

Credits: 9 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington

Courses:
a) Induced seismicity seminar, 2 SWS
b) Fault transition zones, 2 SWS
c) Seismic data and time series analysis, 2 SWS

Prerequisites: The course module is open to all MSc students with a background in the Earth sciences (BSc degree).

Learning outcomes:

After successful completion of the module, students will

  • understand the different causes of induced earthquakes, including fluid injection from unconventional energy production, mining, gas/fluid extraction.
  • be familiar with the geological settings and controls in which earthquakes are produced.
  • understand and describe the statistical properties of induced earthquakes, as well as the current understanding of correlations between injection parameters and event magnitude.
  • be familiar with the competing influence of effective vs. poroelastic stress transfer in the role of generating fault failure, as well the current related scientific studies.
  • understand the chemical and mechanical differences in the brittle-ductile transition zone, and the relation to seismic vs. aseismic slip generation.
  • have a quantitative understanding of the different types of slip events that generate a spectrum of seismic and aseismic signals, including tectonic tremor and LFEs, and slow-slip events.
  • have the programming skills to perform basic signal processing and data analysis on the different types of seismic signals listed above, and to visualize results digitally.

Content: Overview of induced earthquakes in the context of fluid flow near faults and fault systems, the influence of lithology and geology on generating induced earthquakes, statistics and source properties of induce earthquakes, earthquakes induced by reservoir impoundment, gas extraction, enhanced geothermal systems, wastewater and hydraulic fracturing injection, physical mechanisms that induce fault slip, the seismogenic and brittle-ductile transition zone in the crust, seismic and geodetic signals from the seismogenic and fault tranisition zone, slow earthquakes and triggering of earthquakes at shallower depths, slow earthquakes as stress meters, the rock record of fault slip, experimental work on slow earthquakes, tectonic tremor, transition zone evolution after large earthquakes.  Digital analysis of seismic signals including, installation and setup of seismic analysis software (Python), making maps, downloading and analyzing earthquake catalog data, picking seismic phases, analyzing earthquake source parameters, and visualizing all results.

Teaching methods: Courses (a) and (b) are held in a group discussion format, where (c) consists of digital teaching format with accompanying lectures.

Mode of assessment: The course consists of scientific paper discussion (a) and (b), as well as lecture and exercises for (c). The paper discussion in (a) and (b) as well as exercises in (c) must be evaluated a passing grade (70%) to complete the final report (due upon completion of (c)) on which the module grade will be based.

The grade for the module is based on the grade for the report due after the completion of course (c) (it is recommended but not required to complete both (a) and (b) before the completion of (c)). Courses (a) and (b) require leading at least one group discussion on a weekly reading topic, as well as active participation in discussions, and will be evaluated on a pass/no-pass (70%) basis. Courses (a) and (b) must be completed with a “pass” basis in order for the final module grade to be given upon completion of the report in (c).  

Requirement for the award of credit points: Passing grades for courses (a) and (b) require the presentation/leading of one reading topic and active participation in 70% of the discussions. The report grade for (c) will be distributed once (a) and (b) have been successfully completed.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington, Dr. Alessandro Verdecchia

Courses: Mapping active faults, 4 SWS

Prerequisites: The module is open to students with a BSc in the Earth sciences. Additional requirements include successful completion of an introductory geological mapping course. Students must also have successfully completed the module “Seismotectonics and Seismic Hazard” offered during the winter semester.

Learning outcomes:

During a 5 days’ field exercise the students will learn to:

  • recognize and map the geomorphic elements which characterize active normal faults (fault scarps);
  • Measure a coseismic fault scarp in order to define the “slip per event”;
  • measure a “multiple events” fault scarp in order to define the long term slip rate;
  • analyze and interpret a fault trench (gridding, logging);
  • use photogrammetry to reconstruct the 3D geometry of an outcrop;
  • process the collected data with dedicated software (GIS, stereonet, Agisoft PhotoScan)

This course module will use digital mapping tools (GeomapApp), and will have international scientists accompanying students in the field to provide local geological context.

Content: Recognizing and mapping surface evidence of active faulting consitutes the first step towards placing better constraints on the seismic hazard assessment of any region. Therefore, a practical experience in the field is of critical importance for all the geoscientists dealing with the “earthquake problem”. Central Italy is one of the most seismically active regions in Europe. Here, thousands of years of earthquakes have created astonishing fault scarps and very peculiar geomorphic features which make this area a perfect laboratory for structural mapping. Topics included in the course are: Mapping and interpretation of geological structures characterized by active tectonics, geological data processing and analysis.

Teaching methods: 5-days field exercise during the Pfingstwoche preceded by a 2-hours introductory lecture.

Mode of assessment: Course evaluation: The course will be evaluated on the basis of a field map handed in by the student at the conclusion of the field exercise, and a written field report due 4 weeks after the end of the field exercise. Field report (4 week working period). The module grade will be based on the final field report.

Requirement for the award of credit points: Module report with a passing grade.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington, Dr. Alessandro Verdecchia

Courses: Seismotectonics and seismic hazard, 4 SWS

Prerequisites: Students must have successfully completed a BSc in the earth sciences. The course consists of exercises as well as lecture, and exercises must be completed with a passing grade (60%) to access to the final exam on which the module grade will be based.

Learning outcomes:

After successful completion of the module, students will be able to

  • understand the relationship between lithosphere rheology and earthquake distribution.
  • understand the relationship between frictional properties and faulting.
  • understand the basics of earthquake detection and location.
  • understand the relationship among subsequent earthquakes (earthquake and fault interactions).
  • understand the primary (faulting) and secondary (liquefaction, landslides, etc.) effects produced by seismic events.
  • understand the basics of Tectonic Geodesy.
  • understand the basics of Tectonic Geomorphology.
  • understand the basics of Paleoseismology.
  • understand the basics of probabilistic and deterministic seismic hazard calculations.

Content: A multidisciplinary approach is strongly needed in order to better understand the seismic potential of any region in the world. Geological data give us a long-term (thousands of years) view of earthquake phenomena, but they are limited to the first meters of the crust. Seismological and geophysical data can generally better describe deformation processes occurring at depth, but usually with a smaller temporal (tens of years) and spatial resolution. This course will provide an introduction to the earthquake problem from both geological and geophysical points of view, with emphasis on the methodologies commonly used to produce the data necessary to understand and quantify the seismic hazard in any active region.

Topics included in the course are: Rheology of the lithosphere, frictional properties of faults, the seismic cycle, earthquake location, geological effects of earthquakes, tectonic geodesy, tectonic geomorphology, paleoseismology, earthquake and fault interactions, probabilistic and deterministic seismic hazard.

In addition to theoretical information presented via lecture material, the practical exercises teach fundamental data analysis via MATLAB, and other software distributed during the course.

Teaching methods: Lecture period of 2 hours/week with practical exercises of 2 hours/week. Exercises are completed primarily in digital format (basic programming in Matlab).

Mode of assessment: Exercises must be completed with a passing grade of 60% in order to access the final exam. The grade of the module is based on the grade of the final written exam.

Requirement for the award of credit points: Exercises must be completed with a passing grade of 60% in order to access the final exam. The module grade is based on the final exam grade.

For further information please check the M.Sc. Module Handbook Geosciences

Term: M. Sc.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Rebecca Harrington

Courses:
Geology and geohazards in an active subduction zone

Prerequisites: Open to all MSc students. No prerequisites, but an introductory course in geophysics/seismology and/or structural geology will be helpful.

Learning outcomes: After successful completion of the module, students will

  • be able to assess and quantify uplift associated with large thrust fault earthquakes (e.g., Mw 8.3 July 365 CE earthquake in the Hellenic subduction zone) and recent uplift based on current location of tectonic units.
  • recognize and map tsunami landscapes and associated deposits
  • map fault surface trace orientations, measure kinematic indicators, and quantify associated displacement. Use observations collected in the field to estimate regional stress field orientations through stereographic projections.
  • measure fold elements and estimate the stress field through stereographic projections.
  • perform earthquake locations using NonLinLoc (open source program) and assess possible associated geo-hazards given the obtained hypocentral coordinates and magnitudes.
  • use the seismotectonic setting and earthquake locations to evaluate tsunami hazard and estimate an early warning time window.

Content: This block course will give an introduction to the world of earthquake and tsunami hazards in an active subduction zone, associated geological and seismological observations, and the methods used to study them. It will explore the fundamental mechanics of faulting in an active subduction zone through a combination of fieldwork that examines along arc extension, compression related to the subduction thrust, and kinematic/structural indicators of deformation. It will also explore onshore evidence of subduction thrust movement, including archeological evidence of large historical earthquakes and tsunami deposits. In addition, current deformation as evidenced by earthquakes will be explored through exercises using seismic data and analysis that combines theoretical, observational, and field perspectives. A preparatory 3-hour lecture block will take place prior to a 7-day trip that will consist of 1.5 days of lecture/data analysis, and five days of field work. The course is open to MSc students.

Teaching methods: Course will consist of a combination of lecture format with digital materials, group discussion format, and exercises using open source software and digital forms of data, and which digitize field observations.

Mode of assessment: Evaluation of the report due after the completion of course.

Requirements for the award of credit points: Passing grade for the course.

For further information please check the M.Sc. Module Handbook Geosciences

Engineering Geology and Rock Mechanics

Term: 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers; Dr. Mandy Duda

Courses:
a) Felsmechanik, 2 SWS
b) Felsbau, 2 SWS
c) Felskartierung, 5 Tage

Prerequisites: Veranstaltung ‚Stress field of the earth’s crust‘ muss bestanden sein.

Learning outcomes: Die Teilnehmerinnen und Teilnehmer sind mit den Grundlagen der Rheologie der Gesteine, dem mechanischen Verhalten von Trennflächen, Gebirgsklassifikationen und mechanischen Eigenschaften des Gebirges vertraut und kennen die typischen Kennwerte nach Bedeutung und Größe. Darüber hinaus sind die geomechanischen Grundlagen und Zusammenhänge vertieft. Die Teilnehmerinnen und Teilnehmer sind mit den Grundlagen der Erstellung und Sicherung von Felsbauwerken vertraut. Die Teilnehmenden erlernen die grundlegenden Methoden der ingenieurgeologischen Felskartierung. Hierzu gehören die Ansprache der Gesteine im Aufschluss, das Einmessen von Flächen, die Beschreibung der Trennflächen und deren Charakteristika. Die Methodik der Auswertung und Darstellung der im Gelände aufgenommenen Messwerte wird geübt. Die Anwendung einer Gebirgsklassifikation wird gefestigt.

Content:Deformation und Versagen von Gestein; Einführung in die Versuchstechnik; Deformation und Versagen von Trennflächen; Gebirgsklassifikationen; Deformation und Versagen von Fels; Charakteristika von Tunneln, Stollen und Felskavernen; Prinzipien des Hohlraumbaus; Gründungen auf Fels und Böschungen aus Fels; Aufgabenstellungen und Messgrößen bei der geotechnisch/geomechanischen Überwachung; Themen des Bergbaus, Tunnel- und Kavernenbaus, Talsperren; felsmechanische Aufnahme und Beschreibung des Trennflächengefüges.

Teaching methods: Vorlesungen mit integrierten Übungen; Bereitstellung von auf den Lehrinhalten aufbauenden Hausaufgaben; Geländeübung

Mode of assessment: Schriftliche Klausur über die Inhalte der Lehrveranstaltungen; Dauer 90 Minuten am Ende des Semesters.

Requirement for the award of credit points: aktive Bearbeitung der gestellten Übungsaufgaben in a) und b); bestandene Geländeübung c), Bericht über die im Rahmen der Geländeübung gestellte Aufgabe; Berichtsabgabe 3 Wochen nach Ende der Geländeübung; bestandene Modulprüfung

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers

Courses:
a) Regionalgeologische Aspekte der Ingenieurgeologie
b) Ingenieurgeologische Kartierung
c) Geotechnische Herausforderungen des Anthropozäns

Prerequisites: Modul Grundlagen des Geoingenieurwesens

Learning outcomes:

Die Geomorphologie Deutschlands ist sehr vielfältig. Norddeutschland sowie einige
Regionen im Süddeutschen sind stark pleistozän geprägt. Die Eifel, der Oberreihngraben
und das Hegau weisen Zeugen der vulkanischen Aktivität auf. Das Rheinische
Schiefergebirge und der Harz zeigen eine charakteristische Lithologie und Genese. Der
Bereich der schwäbischen und fränkischen Alb sowie das Thüringer Becken weisen eine
typische Schichtstufung auf.
Jede Region der BR Deutschland hat Ihre eigene Kombination aus Lithologie,
strukturgeologischer Historie und Morphologie. Die spezifischen Ausbildungen der
Geologie bringen daher spezifische geotechnische Herausforderungen und Besonderheiten
mit sich. Im Rahmen des Kurses werden die regionalgeologischen Aspekte in Bezug auf
Bautechnik, geotechnische Nutzung, Umweltverträglichkeit und Georisiken z.T. anhand
von Projektbeispielen herausgearbeitet. Im Rahmen der Diskussion der Projektbeispiele
werden darüber hinaus die technischen, ökologischen und ökonomischen Konsequenzen
erarbeitet.
Die Grundlage eines jeden geologischen und auch geotechnischen Modells ist die
Aufnahme der geologischen Bedingungen im Gelände. Neben der Darstellung der
Gesteine sollte eine ingenieurgeologische Kartierung auch weiterführende Hinweise auf
geogene Besonderheiten oder Herausforderungen, welche später die bautechnischen
Fachplanungen beeinflussen können, erheben.
Die ingenieurgeologische Kartierung hat zum Ziel eine Karte zu erstellen, die neben den
geologischen Informationen (Formationen, Verwerfungen) zusätzliche Daten wie
Bodengruppe oder Felsart (Baugrundkarte), Hangrutschungspotential, altbergbauliche
Anlagen und Hohlräume oder Subrosionspotential (Gefahrenhinweis- oder Risikokarte)
darstellt.
Das jüngste Antropozän zeichnet sich durch u.a. massive Veränderungen der
Geländemorphologie durch den Menschen, den Wandel des Klimas und damit verbundene
extreme Wetterereignisse, die Notwendigkeit der Endlagerung radioaktiver Abfälle oder
die Notwendigkeit der massiven Erneuerung der Energieversorgung aus. Dies bedingt
auch geotechnische Lösungen. Im Rahmen des Kurses erstellen die Kursteilnehmerinnen
und -teilnehmer zu einem Thema ein Diskussionspapier, in dem Sie die
Herausforderungen, die sich auch geologisch-geotechnischer Sicht ergeben, definieren und
versuchen realistisch/kreative Lösungsansätze unter Berücksichtigung der vorhandenen
Literatur zu dem Thema zu skizzieren. In einem Impulsvortrag stellen Sie das Thema und
Ihre Thesen vor und stellen den Bezug zu den UN SDGs her. Die Diskussionsergebnisse
und Hinweise zum Impulsvortrag reflektieren Sie in Ihrem Diskussionspapier.
Nach erfolgreichem Abschluss des Kurses sind die Teilnehmerinnen und Teilnehmer mit
den Aspekten, die sich aus den regionalgeologischen Gegebenheiten Deutschlands für
geotechnische und bautechnische Fragestellungen ergeben, vertraut. Darüber hinaus wird
eine Beurteilungsbasis für die Auswirkungen der geotechnischen Massnahmen entwickelt.
Nach erfolgreichem Abschluss des Kurses haben die Teilnehmerinnen und Teilnehmer die
Erstellung einer geologischen Karte intensiviert und sind mit der Identifikation und
kartographischen Darstellung von weiterführenden ingenieurgeologischen Informationen
als Baugrund-, Gefahrenhinweis- oder Risikokarte vertraut.
Die Teilnehmerinnen und Teilnehmer sind mit den UN SDGs vertraut und üben die
Auseinandersetzung mit einem gesellschaftlich relevanten, technischen Thema, welches
geotechnische Lösungen verlangt. Durch den Impulsvortrag stärken die Teilnehmenden
Ihre Präsenations- und Diskussionskompetenz

 

Content: großräumige Verteilung der Gesteine in der BRD Deutschland; typische bautechnische
Eigenschaften der Gesteine; Aspekte, die die Umweltverträglichkeit beeinflussen;
geotechnische Herausforderungen, welche sich aus Geomorhologie und Strukturgeologie
ergeben; Überblick über typische Bau- und Sicherungsmaßnahmen; Erstellung einer
geologischen Karte, Erstellung einer Baugrundkarte, Erstellung einer Gefahrenhinweis-
und Risikokarte; Erstellung eines Diskussionspapiers; Impulsvortrag; Diskussion

 

Teaching methods: Vorlesung, Kartierung, Seminar

Mode of assessment: Klausur, Bericht, Diskussionspapier

Requirement for the award of credit points: Bestandene Klausur, benoteter Bericht, benotetes Diskussionspapier

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers, Dr. Mandy Duda

Courses:
a) Stress field and rock mass behaviour, 2 SWS
b) Geological engineering research project, 2 SWS

Prerequisites: -

Learning outcomes: The students are familiar with rock and rock mass behaviour and the sources of stress in the earth’s crust. They know how to estimate and measure rock mass stress. In addition, the enrolled students are familiar with the determination of stressalterations and -redistributions by antropogenic sources.

Content: Definition of stress, rock deformation, rock failure, rock mass definition, sources of stress in the earth crust, methods of stress measurement and stress modelling, determination of stress alterations and stress redistribution.

Teaching methods: Lectures with exercises, selfworking examples. Seminar and practical work

Mode of assessment: Oral exam at the end of the term

For further information please check the M.Sc. Module Handbook Geosciences

Crystallography

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Dr. Bernd Marler

Courses:
a) Kristallchemie (Vorlesung und Übung), 3 SWS
b) Realstrukturbau und Phasenumwandlungen (Vorlesung und Übung), 3 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Kenntnisse über Aufbau und Symmetrieeigenschaften von Kristallen sowie Kenntnisse in der allgemeinen und anorganischen Chemie werden vorausgesetzt.

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Prinzipien, die zur Ausbildung einer spezifischen Kristallstruktur führen,
  • kennen Studierende strukturelle Grundtypen sowie wichtige Strukturfamilien und deren Eigenschaften,
  • können die Studierenden strukturelle Instabilitäten erkennen und daraus resultierende Phasenumwandlungen klassifizieren,
  • sind die Studierenden in der Lage, die Auswirkungen von Phasenumwandlungen auf physikalische Eigenschaften von Kristallen und deren mögliche Anwendungen abzuschätzen.

Content: Atombau, Quantenzahlen. Chemische Bindungen, Hybridisierung, Paulingsche Regeln. Gitterenergie, Packungsmuster in Kristallen, Bindungsvalenzen, Strukturformeln. Kristallfeldtheorie, Magnetismus. Beschreibung und Darstellung von Kristallstrukturen. Strukturelle Grundtypen, Spinelle, Perowskite, Silikate. Komplexe Kristallstrukturen (Zeolithe, Schichtsilikate), Kristallchemie von H2O. Klassifikation von Gitterdefekten. Fremdatome, thermische Punktdefekte, Diffusion. Versetzungen, Plastizität. Flächendefekte, Stapelfehler, Zwillinge, Formgedächtniseffekte. Klassifikationen von Phasenumwandlungen. Grundzüge der Landau-Theorie, kritische Phänomene. Atomistische Ursachen struktureller Instabilitäten, Auswirkung auf physikalische Eigenschaften. Ferroische Phasenumwandlungen, Domänenbildung

Teaching methods: Vorlesung und schriftliche Übungsaufgaben.

Mode of assessment: Schriftliche Modulabschlussprüfung (Modulklausur) von 2 h.

Requirement for the award of credit points: Bestandene Modulklausur, Bearbeitung aller schriftlichen Übungsaufgaben.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Jürgen Schreuer

Courses:
a) Kristallisation, 2 SWS
b) Synthese und Kristallzüchtung, 4 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Kenntnisse über Aufbau und Symmetrieeigenschaften von Kristallen werden vorausgesetzt, Kenntnisse über Röntgenbeugung sind wünschenswert.

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Parameter und Prozesse, welche die Nukleation und das Wachstum von Keimkristallen in unterschiedlichen Milieus bestimmen,
  • sind Studierende in der Lage, Phasendiagramme zu lesen und unter Einbeziehung thermoanalytischer Daten mögliche Züchtungsstrategien für Einkristalle daraus abzuleiten,
  • kennen Studierende typische Verfahren zur Synthese bzw. Züchtung aus Lösung, Schmelze und Gasphase, und können diese im Hinblick auf das spezifische Züchtungsziel bewerten,
  • sind Studierende in der Lage, einfache Synthese-/Züchtungsaufgaben selbstständig durchzuführen und die Produkte strukturell und thermoanalytisch zu charakterisieren.

Content: Stoffsysteme, Zustandsgrößen, thermodynamische Potentiale, chemische Potentiale, Phasenumwandlungen. Phasenregel, Phasendiagramme, Ein- und Zweistoffsysteme. Verteilungskoeffizienten, Segregationseffekte, Stofftransport durch Diffusion und Konvektion, Viskosität, konstitutionelle Unterkühlung. Nukleationsprozesse, homogene und heterogene Keimbildung, kritischer Keimradius, Ostwald-Miers-Bereich, Ostwaldsche Stufenregel. Wachstumsprozesse, Anlagerungsenergien, Grenzflächenenergien, Flächenkeime, Wachstumsgeschwindigkeiten, Einfluss von Versetzungen, Morphologie von Kristallen. Synthese von Gläsern, Pulvern und Keramiken. Experimentelle und technische Verfahren zur Einkristallzüchtung aus Gasphasen, Lösungen und Schmelzen. Verfahren zur Charakterisierung von Synthese- und Kristallisationsprodukten (u.a. Differentialthermoanalyse, Röntgenbeugung).

Teaching methods: Vorlesung, praktische Laborübungen unter Verwendung diverser Züchtungs- und Messgeräte

Mode of assessment: Schriftliche Modulabschlussprüfung (Modulklausur) von 2 h.

Requirement for the award of credit points: Bestandene Modulklausur, Durchführung aller Laborübungen, erfolgreicher Bericht zu Laborübungen mit Auswertung der gewonnenen Beobachtungen/Messdaten.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Jürgen Schreuer

Courses:
a) Kristallphysik, 3 SWS
b) Physikalische Charakterisierung, 4 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Kenntnisse über Aufbau und Symmetrieeigenschaften von Kristallen werden vorausgesetzt.

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Konzepte der tensoriellen Kristallphysik und verstehen die Zusammenhänge zwischen der atomaren Struktur von Kristallen und deren thermischen, mechanischen und elektrischen Eigenschaften,
  • sind Studierende befähigt, Strategien zur vollständigen Bestimmung tensorieller Eigenschaften von anisotropen Medien zu entwickeln,
  • kennen Studierende geeignete Messverfahren zur Untersuchung thermischer und elektromechanischer Eigenschaften und können entsprechende Messapparaturen nutzen sowie die dafür notwendigen Präparate herstellen,
  • sind Studierende in der Lage, Messergebnisse kritisch zu hinterfragen, mögliche Fehlerquellen zu diagnostizieren und deren Auswirkungen auf die Resultate zu quantifizieren.

Content: Kristallographische und kristallphysikalische Bezugssysteme. Zustandsgrößen, thermodynamische Potentiale, Basiseigenschaften. Nichttensorielle und tensorielle Eigenschaften, Transformationsverhalten. Einfluss von Symmetrie, Neumannsches Prinzip, Curiesches Prinzip. Herstellung von Präparaten für Messzwecke (Orientieren, Sägen, Schleifen). Longitudinal- und Transversaleffekte, Bezugsflächen, Extremwerte von Eigenschaften.
Tensoren 0. Stufe: Dichte und Wärmekapazität, Verfahren zur Bestimmung der Dichte bzw. Wärmekapazität.
Tensoren 1. Stufe: Symmetriereduktion, pyroelektrischer Effekt, Messstrategien, Tensorfläche.
Tensoren 2. Stufe: Symmetriereduktion, Bezugsflächen, symmetrische und antisymmetrische Tensoren, Hauptachsentransformation, Dielektrizitätstensor, Ferroelektrizität, Deformationstensor, thermische Ausdehnung einschließlich der gängigen Messmethoden.
Tensoren 3. Stufe: Tensorfläche, Messstrategien, piezoelektrischer Effekt, Elektrostriktion, Verfahren zur Messung von druckinduzierten Ladungen bzw. feldinduzierten Deformationen.
Tensoren 4. Stufe: Symmetriereduktion, Elastizitätstensoren, Voigt-Notation, Elastostatik, Elastodynamik, Wellenausbreitung in Kristallen, diverse Messmethoden (insbesondere Ultraschallresonanzspektroskopie).
Nichttensorielle Eigenschaften. Kritische Analyse von Messdaten und deren Aufbereitung für Berichte bzw. Publikationen.

Teaching methods: Vorlesung, praktische Laborübungen an typischen Messgeräten.

Mode of assessment: Schriftliche Modulabschlussprüfung (Modulklausur) von 2 h

Requirement for the award of credit points: Bestandene Modulklausur, Durchführung aller Laborübungen, erfolgreicher Bericht zu Laborübungen mit Auswertung der gewonnenen Messdaten.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Dr. Michael Fechtelkord

Courses:
a) Festkörperspektroskopie I: NMR Spek., 2 SWS
b) Festkörperspektroskopie II: Allg. Spek., 2 SWS
c) Laborübungen zu FK I, 2 SWS
d) Laborübungen zu FK II, 2 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Mathematische und physikalische Kenntnisse zur Analysis und Vektoralgebra, sowie Elektrodynamik und Mechanik werden vorausgesetzt

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Konzepte der Spektroskopie und Quantenmechanik und kennen die wichtigsten spektroskopischen Methoden,
  • sind Studierende befähigt, Strategien zur Aufklärung lokaler atomarer Umgebungen zu verfolgen und die korrekte spektroskopische Methode anzuwenden,
  • kennen Studierende geeignete spektroskopische Messverfahren zur Untersuchung von anorganischen Festkörpern, natürlichen und synthetischen Mineralen,
  • sind Studierende in der Lage, spektroskopische Messergebnisse kritisch zu hinterfragen, mögliche Fehlerquellen zu diagnostizieren und deren Auswirkungen auf die Resultate zu quantifizieren.

Content:
a) Festkörperspektroskopie I: Festkörper NMR Spektroskopie:
Was ist NMR-Spektroskopie? Die Zeemanwechselwirkung. Geschichtliche Entwicklung der Technik. Continous Wave- und Impulstechnik. Spin-Gitter-Relaxation und Dynamik. Magnetische dipolare Wechselwirkungen. Pulsverfahren (Spin-Echo). Spin-Spin Relaxation. Die Chemische Verschiebung. Magic-Angle Spinning (MAS). Korrelation von Kernnachbarschaften durch heteronukleare dipolare Wechselwirkung: Cross-Polarisation (CPMAS), Rotational Echo Double Resonance (REDOR). Wirkungsweise der Quadrupolwechselwirkung. Wechselwirkungen 1. und 2. Ordnung, Anisotropie und Quadrupolshift. Magic Angle Spinning bei Quadrupolwechselwirkungen 2. Ordnung. Räumliche und Puls-Ausmittelungsmethoden: Double Rotation (DOR), Dynamic Angle. Spinning (DAS), Multiquanten Magic Angle Spinning (MQMAS)

b) Festkörperspektroskopie II: Allgemeine Spektroskopie:
Wozu braucht man Quantenmechanik: Physikalische Phänomene, die sich nicht klassisch erklären lassen. Plancks Quantelung von Energiezuständen, Welle-Teilchen Dualismus. Wellenfunktion, Hamiltonoperator, Eigenwerte, -funktionen und Schrödinger-Gleichung, Heisenbergsche Unschärferelation. Quantenmechanik einfacher eindimensionaler Systeme. Die elektromagnetische Welle – Aufbau und Polarisation. Wellenlängenbereiche und Anwendung in der Spektroskopie. Intensität und Breite von Spektrallinien. Absorption / Emissionsspektren – Einstein-Koeffizienten. Energieniveaus und Übergangswahrscheinlichkeiten. Rotations- und Schwingungsspektroskopie: Starrer und nicht-starrer Rotator, harmonischer und anharmonischer Oszillator. Auswahlregeln Infrarotspektren, Aufbau moderner Infrarotspektrometer. Raman-Spektroskopie: Rayleighstreuung, Stokes- und Anti-Stokes Linien. Schwingungstypen und Gruppentheorie, Irreduzible Darstellungen, Charaktertafeln, Charaktere, Ordnung, Symmetriespezies, Bestimmung der Schwingungstypen mit Hilfe von Charaktertafeln, Bestimmung von erlaubten und verbotenen Übergängen. Ramanspektren und Aufbau moderner Ramanspektrometer. IR- und -Schwingungsspektren von Mineralen. Elektronenspektroskopie: Ein- und Mehrelektronenatome, Elektronenübergänge, Auswahlregeln, Russell-Saunders Kopplung. Atomabsorptions- und emissionsspektroskopie, Röntgenspektroskopie (XPS, EXAFS). Die Schwingungsstruktur der Elektronenübergänge: Feinstruktur und Franck-Condon-Prinzip. Fluoreszenz und Phosphoreszenz, Funktion von LASERn. UV-VIS Spektroskopie: Aufbau eines UV-VIS Spektrometers, Kristallfeldtheorie, Molekularorbitaltheorie, d-d Übergänge und Charge-Transfer Übergänge, Termsymbole, Jahn-Teller Verzerrung, Tanabe-Sugano Diagramme. EPR Spektroskopie: Der Elektronen-Zeeman-Term. Elektronenspinwechselwirkungen: Die Nullfeld-Aufspaltung (ZFS). Elektronen-Kernspinwechselwirkungen: Die Hyperfeinstruktur (HFS). Aufbau eines EPR cw-Spektrometers: Einkristallspektren und Rotationsdiagramme. Der Mößbauereffekt: Rückstoßfreie Kernresonanzabsorption. Das Mößbauerspektrometer: Ausnutzung des Dopplereffektes. Isomerieverschiebung, Quadrupol- und magnetische Hyperfeinaufspaltung.Typischer Mößbauerkern in den Geowissenschaften: 57Fe. Mößbauerspektren von Mineralen: Bestimmung des Fe2+ / Fe3+ -Verhältnisses

Teaching methods: Vorlesung, praktische Laborübungen an typischen Spektrometern (NMR, IR, UV-VIS).

Mode of assessment: Mündliche Modulabschlußprüfung von 30 min..

Requirement for the award of credit points: Bestandene mündliche Modulabschlußprüfung, Durchführung aller Laborübungen, erfolgreiche Berichte zu Laborübungen mit Auswertung der gewonnenen Messdaten.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Dr. Bernd Marler

Courses:
a) Strukturbestimmung (Vorlesung), 3 SWS
b) Röntgenbeugung (Übung), 4 SWS

Prerequisites:
Formal: Für Studierende in natur- und ingenieurwissenschaftlichen Masterprogrammen.
Textual: Kenntnisse über Aufbau und Symmetrieeigenschaften von Kristallen werden vorausgesetzt, Kenntnisse in der Kristallchemie und der Kristallphysik sind wünschenswert.

Learning outcomes: Nach dem erfolgreichen Abschluss des Moduls

  • kennen Studierende die grundlegenden Prinzipien der Symmetrielehre, der Röntgenbeugung und verschiedener Strukturbestimmungsverfahren,
  • kennen Studierende typische Techniken und Abläufe der Strukturanalyse und können erforderliche Korrekturfaktoren anwenden.
  • sind Studierende in der Lage, für ein gegebenes Problem eine passende Vorgehensweise auszuwählen und beherrschen in Grundzügen die erforderlichen Computerprogramme.
  • sind Studierende in der Lage, auf der Basis eines gegebenen Datensatzes eine Kristallstrukturbestimmung selbstständig durchzuführen und die Qualität des Ergebnisses zu beurteilen.

Content: Kristallographische Grundbegriffe, Kristallsysteme, Kristallklassen, Raumgruppen, Bravais-Gitter, translationsbehaftete Symmetrieelemente. Das reziproke Gitter, Röntgenbeugung, die Braggsche Gleichung, die Ewald-Konstruktion Beugung an Netzebenenscharen. Erzeugung von Röntgenstrahlung, charakteristische Strahlung, Absorption, Berechnung von Absorptionskoeffizienten. Wechselwirkung von Röntgenstrahlung mit Materie, der Atomformfaktor. Der Strukturfaktor, Phasenwinkel. Auslöschungsgesetze, Zusammenhang von Reflexintensität und Strukturfaktor, Korrekturfaktoren Polarizationsfaktor, Lorentzfaktor, Absorptionsfaktor, Skalenfaktor, Temperaturfaktor, Extinktionsfaktor, Häufigkeitsfaktor, Polarisationsfaktor des Monochromators Die Fouriertransformation, Differenz-Fourier-Synthese Strukturbestimmungsverfahren, die Schweratommethode, Direkte Methoden, Methode des isomorphen Ersatzes, die Patterson-Methode, Anomale Dispersion Zwillinge Strukturverfeinerung, Restraints und Constraints, Qualitätsfaktoren Darstellung von Kristallstrukturen.

Teaching methods: Vorlesung, Rechenübungen und praktische Laborübungen unter Verwendung von Röntgendiffraktometern.

Mode of assessment: Schriftliche Modulabschlussprüfung (Modulklausur) von 2 h.

Requirement for the award of credit points: Bestandene Modulklausur, Durchführung aller Laborübungen, erfolgreiche Berichte zu Rechenübungen.

For further information please check the M.Sc. Module Handbook Geosciences

Geophysics

Term: 1. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. W. Friederich

Courses:
a) Geophysical inverse problems (WS, alternating with b), 3 SWS
b) Seismic and electromagnetic field methods (WS, alternating with a), 3 SWS

Prerequisites: Textual: sound mathematical skills (vector calculus, differential- and integral calculus), basic expertise in programming, basic knowledge of mechanics and electrodynamics

Learning outcomes: Students understand the theoretical foundations of seismic and electromagnetic field methods and know up-to-date measuring and data-acquisition procedures.  They know and understand state-of the-art methods of data analysis and interpretation. Students understand the general philosophy of how to properly set up and solve geophysical inverse problems to create subsurface models from geophysical field surveys. They know different approaches to mathematically formulate an inverse problem and various techniques to obtain solutions in practice.  They are able to solve small-scale problems themselves by writing a computer program.

Content:
a) Geophysical Inverse Problems:
Mathematical precursor on linear vector and Hilbert spaces, the continuous linear inverse problem with exact and uncertain data, discrete linear inverse problems with uncertain data, singular value decomposition, resolution analysis, conjugate gradient minimization, linearized iterative inverse problems 

b) Seismic and electromagnetic field methods:
Data acquisition in reflection seismics, seismic data processing, ray and wave-equation migration, basic electromagnetic theory, electromagnetic fields in matter, geoelectric sounding and induced polarization, electromagnetic diffusion and waves in matter and ground penetrating radar

Teaching methods: Lectures accompanied by assignments to be worked out and solved at home encompassing mathematical problems and programming tasks

Mode of assessment: written module examination, 120 minutes

Requirement for the award of credit points: passed module examination, bonus points for voluntary presentation of solutions to exercises

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Jörg Renner (coordinator)

Courses:
a) Reservoir geophysics (SS), 3 SWS
b) Rock physics (SS), 3 SWS

Prerequisites: Textual: sound mathematical skills (vector calculus, differential- and integral calculus)

Learning outcomes: After successful completion of the module students

  • appreciate the scale-dependent approach to the physical characterization of rocks (micro- to decimeter-scale) and reservoirs (deci- to kilometer-scale)
  • understand the relation between physical properties of rocks and their chemical composition and microstructure
  • learned the use and limits of empirical and theoretical concepts for the description of heterogeneous media
  • know the practical aspects of a suite of methods in exploration geophysics
  • are familiar with the mathematical description of physical processes on rock and reservoir scale
  • understand the origin of the governing partial differential equations and master some approaches to their solution

Content:
a) Reservoir geophysics (large-scale perspective):
1) Introduction to reservoirs (hydrocarbon, geothermal)
2) Physical properties of reservoir fluids 3) Hydraulic transport (Kozeny-Carman relation) and storage (linear poro- elasticity I: isostatic stress states)
4) Theory and practice of pumping tests (diffusion equation, scaling)
5) Geothermics (add advection to diffusion)
6) Aspects of waves in real media (wave equation, linear poro-elasticity II: add deviatoric stresses)

b) Rock physics (small-scale perspective):
1) Introduction to rocks and minerals
2) Porosity and interface phenomena
3) Hydraulic transport in rocks (Darcy's law, permeability models)
4) Elasticity (stress, strain, Hooke's law, averaging schemes)
5) Failure of rocks (fracture and friction)
+ Lab practical: students independently conduct simple experiments to determine basic physical properties of rocks (density, porosity, permeability) and fluids (density, viscosity)

Teaching methods: Lectures, assignments (deepening of contents through own research, solving of analytic
and numerical problems), laboratory experiments

Mode of assessment: Written final exam (3 hours), report on lab experiments

Requirement for the award of credit points: Passed module exam (at least 50%)

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. Sem.

Credits: 14 CP

Module coordinator and lecturer(s): Prof. Dr. Friederich (Coordinator), Prof. Dr. Renner

Courses:
a) Field practical, 6d field and 4d data analysis
b) Scientific programming, 3 SWS
c) Geophysical seminar, 4 SWS

Prerequisites:
Textual: basic programming experience
Preparation: Field-practical guide, Python online documentation and tutorials, Metcalf, M.: Fortran 95/2003 explained, selected scientific papers

Learning outcomes: After successful completion of the module, students

  • are able to plan and setup a field campaign, choose appropriate methods and instruments, carry out measurements and use available techniques to analyse the data when given a geophysical survey task.
  • gained proficiency in a programming language (either Python or Fortran) to the extent that they can exploit advanced concepts, such as object-oriented programming, and thus are able to write programs to analyse data acquired in the field, numerically solve geophysical problems, and visualize the results.
  • learned how to perform general and topical literature surveys and how to perform an exegesis of a scientific publication.
  • applied their acquired knowledge and skills to understand and also summarize publications from different fields of geophysics.

Content:
a) Field practical:
Students plan and organize a geophysical field campaign to investigate a specific subsurface target using a specifically selected combination of geophysical survey methods, such as seismics, magnetics, geoelectrics, ground penetrating radar or gravimetry. Data are acquired in the field and analysed in the class-room using state-of-the-art techniques. Programming skills are employed to prepare and organize data and to visualize results for further interpretation.

b) Scientific programming:
Data types, assignments, mathematical operations and functions, input/output, characters and strings, arrays and loops, conditional statements, subroutines and functions, modules, derived data types, polymorphic types and classes. Application of concepts to geophysical problems. Programming Language: Python.

c) Geophysical Seminar:
Literature seminar about a specific geophysical topic where students read and work through selected publications to later report to their fellow students on the contents in a seminar. The student presenters take on the role of moderators during the subsequent discussion of the papers and their presentations.

Teaching methods: Field work, group and project work, oral presentations

Mode of assessment: Report for field practical, evaluation of written programs, oral presentations and
attendance in seminar

Requirement for the award of credit points: Passed report, submission of programming work, and oral presentation

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1., 2. or 3. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Friederich, Prof. Dr. Renner

Contact hours: 20 days

Learning outcomes: After successful completion of the module Students are able to tackle and master a defined task in a timely and organized way

Content:Theoretical and practical tasks related to research activities of the institute’s working groups or of companies

Teaching methods: Team work, project work

Mode of assessment: Report

Requirement for the award of credit points: Assessment of a written report by the advisor

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. W. Friederich

Courses:
a) Seismological data analysis
b) Seismic waves: theory and numerical modelling

Prerequisites: Textual: good English language skills, sound mathematical skills (vector calculus, differential- and integral calculus), basic knowledge of elasticity theory, basic expertise in programming

Learning outcomes: After successful completion of the module students

  • understand the theoretical foundations of seismic wave propagation, and understand and are able to apply selected numerical methods for simulation of seismic wave propagation.
  • know a selection of the most important methods for seismological data analysis, understand them, are able to apply them to simple datasets and to partially implement them by writing a computer program.

Content:
a) Seismological data analysis:
digital signal recording, Nyquist theorem, Fourier transform, analogue and digital filtering, spectral analysis, time-frequency analysis by multiple filtering methods and moving window analysis, dispersion analysis, receiver function analysis, beam forming and splitting analysis, programming in Python

b) Seismic waves:
Stress and strain, seismic wave equation in 3D heterogeneous media, Green functions for 1D, 2D and 3D wave propagation, seismic waves from a point source in full space, description of seismic sources, moment tensor, seismic waves in layered media, numerical simulation methods, finite differences and finite volume, Galerkin finite element methods, programming in Python

Teaching methods: Lectures accompanied by assignments to be worked out and solved at home encompassing mathematical problems and programming tasks

Mode of assessment: written module examination, 120 minutes

Requirement for the award of credit points: passed module examination, bonus points for voluntary presentation of solutions to exercises

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Jörg Renner (Coordinator)

Courses:
a) Continuum mechanics (WS, alternating with b), 3 SWS
b) Physics of earth materials (WS, alternating with a), 3 SWS

Prerequisites: Textual: sound mathematical skills (vector calculus, differential- and integral calculus)

Learning outcomes: After successful completion of the module students

  • know micromechanical/atomistic concepts behind bulk properties (in particular density and viscosity)
  • appreciate the basic theoretical concepts of solid-state physics and thermodynamics
  • are familiar with the basic approaches and techniques in continuum mechanics
  • understand the basic concept of numerical solution of differential equation master
  • are capable of coding simple finite-difference schemes
  • grasp the relevance of physical properties of rocks for geodynamic problems, such as subduction and delamination
  • can apply the introduced mathematical tools to problems encountered for the three Earth spheres, atmosphere, hydrosphere, and geosphere

Content:
a) Continuum Mechanics:
1) Differentiation and integration of scalar and vectorial fields
2) Kinematics (Euler and Lagrange description)
3) Conservation laws in differential and integral form (Navier-Stokes equations)
4) Applications (Specific cases of the Navier-Stokes equations and similarity numbers)

b) Physics of Earth materials:
1) Geophysical and geochemical Earth models
2) Elastic constitutive equations for minerals at high temperature and pressure
3) Crystal defects (point defects, dislocations, grain boundaries)
4) Deformation mechanisms at high temperatures (diffusion and dislocation creep)
5) Applications of flow laws to geodynamic problems

Teaching methods: Lectures, assignments (deepening of contents through own research, solving of analytic
and numerical problems including programming of a finite-difference algorithm)

Mode of assessment: Written module exam (3 hours)

Requirement for the award of credit points: Passes module exam (at least 50%)

For further information please check the M.Sc. Module Handbook Geosciences

Petrology & Geochemistry

Term: 3. Sem.

Credits: 6 CP

Module coordinator and lecturer(s): Prof. Dr. Sumit Chakraborty

Courses:
a) Field trip, 10 days
b) Analysis of results and preparation of report, 2 SWS

Prerequisites: Attendance of a Master level course in either Igneous petrology or Metamorphic petrology

Learning outcomes: Students learn how to integrate field observations with petrological concepts to work out the evolutionary history of an area.

Content: A ca. 10-day field trip (exact duration depending on locality; variable each year) to make petrological observations and integrate these with relevant field relations, structural observations and background geology of the area. Synthesis of these results with studies on thin sections and chemical data from the rocks to develop an evolutionary model of the area

Types of courses: a) Field trip and b) Discussion sections.

Types of examinations: A report

Prerequisites for earning the credit points: Participation in the field trip as well as in preparatory and follow up discussions. Passed report.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Sumit Chakraborty

Courses:
a) Petrology of igneous rocks, 2 SWS
b) Thin section exercises with igneous rocks, 2 SWS
c) Numerical exercises with data from igneous rocks

Prerequisites: -

Learning outcomes: The students

  • gain an advanced understanding of igneous petrology.
  • master detailed microscopic and macroscopic descriptions and documentation of igneous rocks
  • are able to use textural and thermodynamic criteria to work out the genetic history of the rocks
  • know how to place the results in a geodynamic context of thermal evolution of the crust and the mantle

Content:
a) Petrology of igneous rocks:
Thermal structure of the Earth and formation of melts. Classification of Igneous rocks. Geochemical characteristics of igneous rocks. Trace element and isotopic characteristics of igneous rocks. Physical properties of silicate melts. Phase equilibria and phase diagrams. Melting in the mantle. Igneous processes in selected tectonic settings: Mid ocean ridges, subduction zones. Crustal melting and genesis of granitic rocks. Volcanic processes and basics of volcanology and volcanic hazards.

b) Thin section exercises with igneous rocks:
Igneous minerals in thin sections. General information on documenting thin section reports. Case studies of a range of volcanic and plutonic rocks to read the rock record to infer the processes that led to their formation. An emphasis is on relating the observations to phase diagrams and on inferring multistage processes from the rock record.

c) Numerical exercises with data from igneous rocks:
Calculation of CIPW Norm. Trace element modelling. Calculation of magma mixing, fractionation, assimilation and other igneous processes. Use of thermodynamic software such as MELTS to calculate equilibrium assemblages and compositions as well as to model the evolution of magmatic systems.

Types of courses: Lectures and practicals (microscopy and calculations).

Types of examinations: A final written examination including questions on microscopy of thin sections.

Prerequisites for earning the credit points: Passing the examination

For further information please check the M.Sc. Module Handbook Geosciences

Term: 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Sumit Chakraborty

Courses:
a) Principles of chemical kinetics (3 CP), 2 SWS
b) Diffusion chronometry (4 CP), 2 SWS
c) Kinetic modelling (3 CP), 2 SWS

Prerequisites: -

Learning outcomes: Students understand

  • the basic principles of chemical kinetics
  • how to use kinetics to determine timescales
  • how frozen records are produced in rocks during cooling after a thermal event

Content:
a) Principles of chemical kinetics:
Rate laws of chemical kinetics. Elementary reactions and reaction mechanisms. Factors that control chemical kinetics. Crystal growth kinetics (including discussion of crystal size distribution, CSD). Nucleation rate laws. Combined nucleation and growth – overall transformation and TTT diagrams. Closure temperatures. This course will have lectures.

b) Diffusion chronometry:
Diffusion in solids. Different kinds of diffusion coefficients. Factors that control diffusion coefficients. Experimental methods for determination of diffusion rates. Setting up a diffusion model. Different kinds of approaches to get timescales – isothermal systems. Different kinds of approaches to get cooling and exhumation rates – non-isothermal
systems. Errors and uncertainties Case studies. This course will have lectures and practicals.

c) Kinetic modelling:
Coupled processes in series and parallel. Rate limiting behavior. Reaction mechanism maps. Combination of chemical kinetics, fluid transport and chemical equilibrium

Types of courses: Lectures and practicals

Types of examinations: A written final examination

Prerequisites for earning the credit points: Passing grades in the final examination

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. Sem.

Credits: 12 CP

Module coordinator and lecturer(s): Dr. Hans-Peter Schertl, Dr. Niels Jöns, Prof. Annika Dziggel (Ph.D.), Dr. Silvia Volante

Courses:
a) Petrology of metamorphic rocks, 2 SWS
b) Thin section exercises with metamorphic rocks, 2 SWS
c) Numerical exercises with data from metamorphic rocks, 2 SWS
d) THERMOCALC course, 1 SWS

Prerequisites: -

Learning outcomes: The students

  • gain an advanced understanding of metamorphic petrology.
  • master detailed microscopic and macroscopic descriptions and documentation of metamorphic rocks
  • are able to use textural and thermodynamic criteria to work out the genetic history of the rocks
  • know how to place the results in a geodynamic context.

Content:
a) Petrology of metamorphic rocks:
Introduction to the basic questions in petrological research; how metamorphic rocks can be used to answer geodynamic questions. Crystal chemical basis (coordination polyhedral, exchange vectors). Representation of minerals in chemographic diagrams. Gibbs phase rule. Topology of phase diagrams and thermodynamic basis. Types of metamorphism: Regional – limited (cataclastic, mylonitic, contact); Regional – extended (Burial, orogenic). P-T-t evolution due to crustal thickening and extension. Subduction, magmatic underplating. Metamorphic zones and Facies series. Barrow type, Abukuma type, Subduction type. Types of metamorphic equilibria: Solid-gas equilibria (dehydration reactions, decarbonation reactions, redox reactions). Solid-solid reactions (Influence of solid solution on location of phase boundaries, divariant thermometers, divariant barometers). Trace element thermometers. Zoning in minerals (diffusion controlled growth, retrograde Fe-Mg exchange). Mass transport in metamorphism (Fluid flow, metasomatism). Observations of metamorphic evolution of model systems (Ultramafics, metabasics, calc-silicates, metapelites). Basics of geochronology of metamorphic rocks.

b) Thin section exercises with metamorphic rocks:
Identification of the most important metamorphic minerals in thin sections. General information on documenting thin section reports. Case studies of metapelites and metabasites (hand specimen description, petrographic description, texture analysis, discussion of possible protoliths, P-T evolution, phase relations, topology of phase diagrams).

c) Numerical exercises with data from metamorphic rocks:
Calculation of mineral formulae from chemical analyses. Representation of mineral compositions and phase relations. Schreinemaker’s Analysis. Application of Clausius-Clapeyron equation to construct phase boundaries in P-T space. Generation of compatibility diagrams. P-T sections, T-X sections, P-X sections and P-T pseudosections with the help of thermodynamic software. Interpretation of the results using examples from real metamorphic rocks. Geothermobarometric calculations. Derivation of P-T conditions of formation of rocks on the basis of P-T grids.

d) THERMOCALC course:
Advanced pseudosection modelling course for more complex model systems involving solid solutions, based on case studies in metabasic rocks.

Types of courses: Lectures and practicals (microscopy and calculations).

Types of examinations: Graded final report. Each individual makes microscopic observations on a sample, interpret the results and carry out numerical calculations associated with the observations.

Prerequisites for earning the credit points: Report with passing grade

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Sumit Chakraborty

Courses:
a) Principles of elementary thermodynamics, 4 SWS
b) Solution phase thermodynamics, 2 SWS

Prerequisites: -

Learning outcomes: Students understand

  • the basic principles of thermodynamics
  •  solution thermodynamics and know thermodynamic modelling

Content:
a) Principles of elementary thermodynamics:
Nature of Thermodynamics; Definition of Systems (Open, Closed, Isolated), processes (Reversible, Irreversible etc.), Time scales - to the extent it does or does not play a role. Work, Energy and Functions of state Heat. Energy Conservation and first law (i.e. What is possible?) Heat capacity, Enthalpy. Irreversibility and Entropy - second law and very brief mention of third law (i.e. What  really happens?) Combined first and second law and Master equation of thermodynamics - energy balance Mathematical digression - Exact and Inexact differentials, Legendre Transformation, Chain rule. Accessory Functions - G, H and A. Maxwell's Laws. P-V-T Equation of State for Solids, Fluids and Gases - What properties they should have and what they look like for some geomaterials. Chemical equilibrium - I. Stoichiometric substances (Concept of G minimum, log K and Clausius-Clapeyron equation and P-T slopes). This will have two hours of lecture and two hours of practical with homework problems to be solved outside of class contact hours.

b) Solution phase thermodynamics:
Chemical Potential, Activity, Fugacity. Raoult and Henry's law. Possibility of various standard states (i.e. nothing unique about it), e.g. 1bar, T vs. P,T Ideal and excess properties, activity – composition relations, dilute solutions and trace elements, Free-energy composition relations i.e. G-X diagrams and stability of solutions. Combine chemical equilibrium relations and Mixtures to calculate - (i) Shift of equilibrium boundaries on solution formation (ii) Phase rule and Duhem's theorem, with various applications. (introduce various free energy minimization softwares) Temperature (and pressure) dependence of reactions (Delta H) and melt phase diagrams (Eutectic, binary solid solution loop). Thermodynamics of electrolytes and ocean water. This course will have lectures and discussions.

Types of courses: Lectures and practicals

Types of examinations: A written final examination

Prerequisites for earning the credit points: Passing grade in the final examination

For further information please check the M.Sc. Module Handbook Geosciences

Term: 2. + 4. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Raúl Fonseca

Courses:
a) High-Temperature geochemistry – application of radiogenic and stable isotopes to high-temperature geological systems and ore deposits (SoSe), 3 SWS
b) Practical – Application of mass spectrometry to radiogenic and stable isotope systems. Data reduction and treatment. (SoSe), 3 SWS

Prerequisites: Students in the MSc. program of Geosciences and related MSc. programs. Prior attendance of Sedimentary Geochemistry (MSc.) and Einführung in die Geochemie (Introduction to Geochemistry - 5. Semester BSc.) is strongly encouraged.

Learning outcomes: After successful completion of the module the students will

  • understand how isotope systems can be used to answer fundamental questions related to high-temperature geological 
  • know analytical techniques related to the acquisition of trace element and isotope data from magmatic, metamorphic and ore mineral samples 
  • be able to understand how to interpret these data to identify high-temperature processes occurring at various scales (e.g. from Earth’s crust and mantle to solar system planetary differentiation)

Content:
The lecture will provide an overview of the application of radioactive and stable isotopes to high-temperature geological systems, including igneous and metamorphic samples, as well as magmatic and hydrothermal ore deposits. In the first half of the Module, students will learn to apply data from classic radioactive decay systems (i.e. Rb-Sr, U-Pb, Sm-Nd, Lu-Hf isotopes) to a different rock types produced as a result of high-temperature processes (metamorphism, melting and crystallization). Students will be introduced to other radioactive systems (both extant and extinct) that have seen increasing application in Earth Sciences, like Hf-W, Pd-Ag, Re-Os, Pt-Os etc.. All these systems can be used to identify specific processes, which range in scale from crystallization of silicate and sulfide minerals from magmas, to core formation in planetary bodies.

The second half of the Module will deal with non-traditional stable isotope systems and how they can be used to complement data from radioactive decay systems in a variety of applications. These systems will include an overview of B, Si, Mo, Ti, V, Cr, and Fe isotopes to characterize processes and variables ranging from fluid-rock interaction, crustal recycling, redox conditions, mantle source compositions and many others.

The lecture will be complemented by a practical (Übung) where geochemical data from natural and experimental samples will be discussed and evaluated. Moreover, case studies involving different high-temperature geological settings will be discussed.

Teaching methods: Teaching and practical work (Exercises).

Mode of assessment: Written examination and practical work report or oral exam, depending on class size (written examination 90 minutes, oral examination 30 minutes).

Requirement for the award of credit points: 50 or more points in written examination, active performance in the laboratory course (weighing 80% written examination 20% practical course)

For further information please check the M.Sc. Module Handbook Geosciences

Sedimentology and Quarternary Geology

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. A. Immenhauser

Courses:
a) Sedimentary systems I (WiSe), 3 SWS
b) Sedimentary systems II (SoSe), 4 SWS
c) Biomineralization (WiSe), 3 SWS

Prerequisites: -

Learning outcomes: Students that have successfully completed the module will understand:

  • sediments and sedimentary rocks from a broad and holistic approach to their origin and their depositional environments
  • how and why sediments and sedimentary rocks have differential properties depending on where they are deposited and how their diagenetic pathways proceeded
  • how sea level change, sediment transport and deposition and the interaction of life and physico-chemical processes shapes large-scale sediment bodies that have very significant fundamental and applied value
  • how biology and chemistry interact to form minerals that are in part indistinguishable from abiogenic minerals.

Content:
Students will be given a broad overview on recent (fundamental and applied) research in sedimentology with focus on carbonates. Sedimentary Systems I is a general introduction to sedimentary depositional environments and environmental and biological factors that shape these environments. Sedimentary Systems II makes use of these basics and places sedimentology in the context of sequence stratigraphy. The course biomineralization is the most advanced course and discusses and documents the manner by which organisms secrete or induce minerals. Courses Sedimentary Systems I and II can be chosen as individual subjects and added to the optional module.

a) Sedimentary Systems I:
Following a general introduction, we discuss factors controlling carbonate (mainly marine) production and deposition. Next topic is an overview on carbonate factories (T, C, and M factory). We then discuss reefal facies through time commencing with microbial reefs in the Proterozoic and ending with modern scleractinian coral reefs. This is followed by classes on carbonate platforms, ramps, atolls and guyots as well as carbonate mounds. We conclude this part by an excursion into the evaporitic systems. The class continuously moves from fundamental to applied aspects and this is the type of teaching that is relevant for MSc and PhD students but also for applied scientists concerned with hydrocarbon reservoirs, geothermal energy and engineering perspectives.

b) Sedimentary Systems II:
Deals with the controls on sedimentary systems using carbonates, and to some degree evaporites, as main system of interest. We discuss topics such as the function of water depth and hydrodynamic level on sedimentary facies. The main focus is on sequences, parasequences and also to some degree of seismic stratigraphy. The course combines theoretical lectures and practical exercises. Note, the basic concepts of sequence stratigraphy come from the industry and particularly the aim to understand seismic lines and carbonate bodies in their four dimensions.

c) Biomineralization:
This class has clear fundamental values and is relevant for those either aiming for an academic career or for students interested in material sciences. This implies that for instance students with focus on crystallography could be interested. We discuss the concept of life forming minerals with a broad range of topics including the early, primitive minerals induced by microbes to the extremely sophisticated organo-mineralic composite materials formed by mammals or some planktonic life forms.

Teaching methods: Teaching and practical aspects, presentation and exercises

Mode of assessment: Written examination (90’) combining the material taught in Sedimentary Systems I and II , Oral presentation (15’, 12 ppt slides) in class biomineralization with passed/not passed but no exam

Requirements for the award of credit points: 50 or more points in written examination, active performance in the biomineralization class

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Dr. S. Riechelmann

Courses:
a) Isotope geochemistry Principles and applications (WiSe 1. Term)
b) Laboratory course isotope geochemistry (WiSe 3. Term)
alternatively
c) Basics of stable isotope geochemistry (WiSe 3. Term)

Prerequisites: Students in the MSc programme Geosciences and related MSc programmes

Learning outcomes: After successful completion of the module the students

  • understand the principles of isotope geology including basics of decay systems and
  • geochronology as well as stable isotope geochemistry.
  • know analytical techniques related to traditional and non-traditional stable isotope
  • methods in sedimentary geology.
  • will be enabled to assess the application of isotope analytics in sedimentary
  • (diagenetic/ depositional/ alteration) processes, hydrology, (paleo)environmental and paleo(climate) research.

Content:

The lecture provides a basic overview on radiogenic isotope geology (radioactive dating methods) and stable isotope geology (traditional and non-traditional isotope systems) and their application in geological research. Complementary to the lecture the practical laboratory course aims at imparting the knowledge and know-how of selected (available) isotope techniques and methodologies in mass spectrometry.

The course Basics of stable isotope geochemistry encompasses a theoretical overview of analytical methods and the application of selected stable isotope systems in Earth sciences Isotope Geochemistry Principles and Applications:
Introduction to principles of isotopes, natural radioactivity and radioactive dating methods. Common radioactive dating methods (Rb-Sr, Sm-Nd, U-Th-Pb, Pb-Pb) are outlined and application examples are provided. In addition, U-series age determination methods (secular equilibrium and disequilibrium) and their application to sedimentary geology are introduced. The relevance of cosmogenic isotopes for research in applied geology, sedimentary systems and archaeology is taught and examples are given. The emphasis lies on the stable (traditional and so called non-traditional) isotope systems in sedimentary (carbonate) geology and hydrogeology. The isotope systems of H, N, C, O, S, Mg and Ca are outlined in detail. Their common use in (palaeo)environment and (palaeo)climate research, sedimentology, speleology, palaeontology and hydrogeology are discussed.

Laboratory course Isotope Geochemistry:

With regard to the actual research topics and instrumental equipment selected isotope analyses are performed. In general, students work supervised on a complete procedure from hand specimen to result. From a polished hand specimen of a carbonate rock genetically different material is sampled by micro-drilling. Elemental composition is determined by ICP-OES and subsequently aliquots of the material are prepared for C/O and Sr isotope analysis and following measured. Aim is the evaluation of the state of preservation of fossil carbonate material, the degree of diagenetic overprint and an assessment of the geological age based on Sr isotope stratigraphy. In addition, dissolved inorganic carbon (DIC) from water samples are analysed in order to determine the origin (biogenic/abiogenic) of the water sources. Depending on the availability of instruments O and H isotopes of water are analysed to determine the origin of the water samples. The lab course concludes with the final interpretation of the results and the evaluation of the geological significance of the data.

Basics of Stable Isotope Geochemistry:

This course introduces isotope geology and basic principles of isotope geochemistry. Selected stable isotope systems, relevant in geology, palaeontology, hydrology, archaeology etc. are then discussed in detail and examples are presented to highlight the fidelity of isotope geochemistry across disciplines. Given the importance of water in geology, specific emphasis is placed on stable oxygen and hydrogen isotopes in the water cycle and in carbonate geochemistry. The isotope systems of H, C, O and Sr are outlined in detail because of their importance for geology, geothermometry, (palaeo)climate research, palaeontology and hydrogeology.

Teaching methods: Lecture, exercises and practical laboratory work

Mode of assessment:

Written exam for (a) and (c) and laboratory work report for (b) (written exam (a)
90 minutes, written exam (c) 30 minutes).

Requirements for the award of credit points: 50 or more points in written exam(s) and laboratory work report, active performance in the laboratory course; (weighing 80% for (a) and 20% for (b) / (c))

For further information please check the M.Sc. Module Handbook Geosciences

Term: M.Sc.

Credits: 8 CP

Module coordinator and lecturer(s): Prof. Dr. A. Immenhauser (Modulbeauftragter), Assistenten Sediment- und Isotopengeologie in Zusammenarbeit mit Prof. Dr. J. Schreuer (Kristallographie).

Courses:
Geländeübungen in wechselnden Gebieten (Dolomiten, Sibirien etc.).

Prerequisites: Für Studierende im Masters Programm Geowissenschaften mit Fokus in Sedimentologie, Mineralogie-Petrologie und Kristallographie

Learning outcomes: Die Lernziele richten sich im Detail nach dem Ziel der Geländeübung. So vereinen wir Geländegeologie, Erdgeschichte, Sedimentologie, Stratigraphie, Vulkanologie, Petrologie und Kristallographie in der Geländeübung „Dolomiten“. In der Geländeübung „Sibirien“ vereinen wir Quartärgeologie, Geomorphologie, Glaziologie, Rohstoffe und die Interaktion von Mensch und Geologie. Grundsätzlich lässt sich sagen, dass wir anstreben, dass die Studierenden die in der Vorlesung und den Übungen erworbenen Fertigkeiten und Fähigkeiten im Gelände einsetzten. Dabei brechen wir konstant mit traditionellen Fächern wie Sedimentologie und Petrologie, sondern kombinieren immer wieder Elemente aus diesen Disziplinen. Die Studierendenden üben sich im Anfertigen von Skizzen im Gelände und beschreiben ihre Beobachtungen in kurzen Bereichen. Nach dem erfolgreichen Abschluss des Moduls Haben die Studierenden vertiefte Einblicke in die Geologie eines erstklassigen Feldgebietes mit hoher Relevanz für die Geowissenschaften allgemein. Verstehen die Studierenden, dass die traditionellen untertrennten Fächer wie Sedimentologie, Strukturgeologie oder Petrologie in Wirklichkeit nur Teile eines Ganzen sind. Können Studierende Geländebeobachtungen in prägnanten Skizzen und kurzen und
präzisen Bereichen wiedergeben.

Internationalisierung: Geländekurse finden weltweit statt.

Content: Abhängig von Gebiet des Geländekurses, das besucht wird.

Teaching methods: Seminar im Vorfeld des Geländekurses, Lehrgespräche im Gelände, Skizzieren und selbstständiges Arbeiten.

Mode of assessment: Die Modulnote setzt sich zusammen aus Bewertung Vortrag und Bericht Vorseminar, abgegebenen Skizzen und Berichten, sowie aktiver Teilnahme an den Geländeübungen. Das Vorseminar besteht aus Vorträgen zu ausgewählten Themen. Pro Teilnehmer muss ein Vortrag von 10-15‘ Dauer gehalten werden. Dazu ist eine Zusammenfassung zum selben Thema von 1-2 Seiten Länge bis zu einer definierten Frist einzureichen. Im Zuge der Geländeübung werden je nach Witterung 4-5 Skizzen an ausgewählten Aufschlüssen angefertigt. Die Skizzen werden als Rohskizze im Gelände erstellt und abends ausgearbeitet. Alle Reinskizzen müssen vor Ende der Geländeübung beim Dozenten eingereicht werden. Zum erfolgreichen Abschluss des Moduls wird eine aktive und interessierte Teilnahme der Studierenden bei den Geländeübungen erwartet. Medizinische Gründe (kleine Verletzungen) können als Begründung für ein
Fernbleiben an einzelnen Exkursionstagen gewertet werden. Falls Studierende an 33% oder mehr aller Geländetage nicht teilnehmen, kann das Modul nur in sehr gut begründeten Ausnahmefällen angerechnet werden

Requirements for the award of credit points: Ausreichende Bewertung der praktischen Beiträge (Seminar, Skizzen, Berichte) und hochaktive Teilnahme an der Geländeübung

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. Sem.

Credits: 5 CP

Module coordinator and lecturer(s): Prof. Dr. Tobias Backers

Courses:
a) Quartärgeologie (3 CP), 2 SWS
b) Georisiken (2 CP), 1 SWS

Prerequisites: Für Studierende im Master -Programm Geowissenschaften, die nicht den B.Sc. Abschluss Geowissenschaften an der Ruhr-Universität Bochum erworben haben

Learning outcomes: Studierende wurden nach Beendigung des Moduls in die Grundlagen der Geologie des
Pleisto- und Holozäns eingeführt. Nach dem erfolgreichen Abschluss des Moduls

  • kennen und erkennen die Studierenden die wichtigsten quartären Ablagerungsräume und deren Sedimente und Sedimentgesteine
  • kennen die Studierenden die grundlegenden Eigenschaften der quartären Sedimente und Sedimentgesteine
  • verstehen die Studierenden die sich aus den spezifischen Eigenschaften der verschiedenen Sedimente und Gesteine ergebenden geogenen Gefahren
  • verstehen Studierende die grundlegenden Mechanismen der Gletscher
  • verstehen Studierenden die Nutzung geologischen Wissens zur Lösung praktischer Probleme

Content:
a) Quartärgeologie:
In der Veranstaltung Quartärgeologie werden die speziellen Bedingungen, Prozesse und Ablagerungsräume des Pleistozäns und Holozäns besprochen. Die Sedimente des Quartärs sind vielfach nicht oder wenig verfestigt und haben dadurch besondere geotechnologische Eigenschaften, welche auch die zivilisatorische Nutzung beeinflussen. Ausgehend von einer Analyse des Klimas und der dadurch gegebenen Bedingungen werden die Liefergebiete, die Ablagerungsräume, die maßgeblichen Sedimente, deren Eigenschaften nebst deren Veränderlichkeit und die sich ausbildende Morphologie vermittelt.

c) Georisiken:
Im Rahmen der Veranstaltung Georisiken werden die Prozesse und Bedingungen diskutiert, die zu Veränderungen führen, welche negative Auswirkungen für die Nutzung des geologischen Untergrundes und die Biosphäre haben. Hierbei wird auf die Erkenntnisse der anderen Veranstaltungen des Moduls aufgebaut.

Teaching methods: Vorlesung mit integrierten Übungen und Diskussionen

Mode of assessment: Modulklausur (90 min), Hausarbeit

Requirement for the award of credit points: Ausreichende Bewertung der Klausur und Hausarbeit

For further information please check the M.Sc. Module Handbook Geosciences

Tectonics and Resources

Term: 2. + 3. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Annika Dziggel (Ph.D)

Courses:
a) Pre-field course seminar, 1 SWS
b) Field course, 10 days

Prerequisites: -

Learning outcomes: Upon successful completion of this module, the students 

  • know how to document and interpret structural and petrological data.
  • are able to integrate field observations with theoretical knowledge in tectonics and/or economic geology

Content:
The content and exact duration of the field course depend on the field area, which is variable each year (Scotland, South Africa, ...). The field course is preceded by a seminar. The aim of this field course is to train the student's field skills in tectonics and economic geology, and to combine theoretical knowledge with field observations. The field course may include small mapping projects and visits to open pit and underground mines.

Types of courses: Field trip, seminar.

Types of examinations: Report.

Requirements for the award of credit points: Participation in the field trip and seminar. Passing grade for the report.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Dr. Olaf Podlaha

Courses:
a) Petroleum geology I (Erdölgeologie I), 2 SWS
b) Petroleum geology II (Erdölgeologie II), 2 SWS
c) Field trip (Geländeübung), 1 day

Prerequisites: Students enrolled in a Geosciences Master-Program

Learning outcomes: The module consists of a winter-term lecture (a), a summer-term lecture (b) and a summer term field trip (c).

Module part a):
The assessment center exercise aims at communicative interaction and gaining/deepening „soft-skills“ (team work, resilience to challenging time vs. content preparations, concept selection, short presentation, facing a managerial board, staying in control of a meeting, addressing challenging questions constructively and authentically). Students gain academic level knowledge and applied competences to gather, interpret and rank such reservoirs:

  • in their context of primary depositional environment, its fundamental controls on global, regional and local scale.
  • using systemically relevant geogenic alteration factors with positive and/or negative consequences on the reservoir properties and their economic relevance.
  • executing analysis, interpretation and assessment of pore fluids with respect to their geo-heritage and economic value.

Module part b): lecture in petroleum geology II:
building on a) and taught for deepening regional geological knowledge with respect to regions with economically relevant subsurface reservoirs. Based on published data, gathering, interpreting and assessing subsurface data forms the core of the student learning. The repetitive evaluation of different regions in the context of the subsurface systemic concept learned in petroleum geology I enables the acquisition of skills to consistently apply prior knowledge and build portfolios differentiating between analogous and unique geological systems. The students gain/learn:

  • systemic competencies of applying the competences of (a) in a different regional geo-context.
  • global and regional geological knowledge, analogous occurrences of subsurface architectures versus unique settings and their characteristics.
  • risks and opportunities derived from analogous versus unique settings, specifically with respect to economic exploration, development and production of the subsurface reservoir.
  • risk minimization in previously unknown regional settings through the use of analogues in the competency context of analysis – recollection – application – assessment.

Module part b) is supplemented by an offering of a ½ day assessment center exercise.  Participation is voluntary.

Module part c), field trip:
Conducted in the border region of the Netherlands, Lower Saxony and North Rhine-Westphalia. The field trip aims at acquiring the practical skills to combine prior knowledge gained in other field trips, prior regional geological  knowledge and the economical geological skills of the lectures. As a result, a new/adjusted/different/professionally relevant assessment of the area is achieved and learning for later work life is performed.

  • The students learn the practical relevance of the theoretical systemic knowledge acquired in a) and b).
  • The students learn to integrate prior knowledge of fieldwork within the context of subsurface reservoir interpretation.
  • The students gather, describe, assess and interpret the outcrops based on rock samples taken.
  • The students integrate for each outcrop the new insights with those from previous outcrops.
  • They form, then deepen or revise hypothesis and build a regional to subregional interpretation framework. They achieve a systemic and economic assessment of existing subsurface reservoirs in the region and their past, current and future utilization.

Digitalization: The relevance and importance of geological modeling of sedimentary basins, subsurface porous network flow modeling and economic assessments are introduced with respect to exemplary software packages. Digital interpretation methods, based on prior manual preparation of data and geological thinking, are taught. The importance of AI and ML (artificial intelligence/machine learning) methods for the consistent processing of large geological data sets, specifically in the context of subsurface reservoirs are discussed. Example data sets and scenarios are used in both economic and geotechnical exercises. Software is not being developed in this course.

Content:
One lecture date is used for a practical in-field exercise within the vicinity of the University. Interactively the acquired competences are applied, practiced and thereby
deepened.

Module part a), lecture in petroleum geology I:
Presentation, questioning and feedback methods in English language - The petroleum system and its controls - Sediments and facies - Reservoir petrology, petrophysics - Pore fluids - Reservoir fluid properties through time - Modelling - Assessment center (optional)

Petroleum geology II:
Repetition: Petroleum system concept and controls; Economic and regional geology

Field trip:
Petroleum System Emsland ; Bad Bentheim: sediments, stratigraphy, geological overview; Outcrops; Production units, history, economic importance; Composing an integrated geo-economic concept on the petroleum systems of the Emsland, integrated interpretation

Teaching methods: Lecture, integrated exercises and field trip

Mode of assessment: One final written exam on (a) and (b) lectures combined, report on the field trip

Requirements for the award of credit points: Written exam: Sufficient level result (“Ausreichend”), successful participation in the field trip

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Annika Dziggel (Ph.D)

Courses:
a) Metallic mineral deposits, 2 SWS
b) Non-metallic mineral deposits, 1 SWS
c) Research project on ore deposits, 3 SWS

Prerequisites: -

Learning outcomes: Upon successful completion of this module, the students

  • have an in-depth understanding on the processes of formation of metallic and non-metallic mineral deposits and their different geodynamic settings.
  • are able to identify and document the mineralogical and textural characteristics of a wide range of deposit types.
  • know how to evaluate the conditions and processes of element enrichment using a variety of analytical techniques as well as whole rock and mineral-chemical data.

Content:
a) Metallic mineral deposits:
Introduction to ore forming processes, genetic concepts and classifications. Conceptual difference between mineral resources and ore reserves; economic aspects. Magmatic(-hydrothermal) ore forming systems: ortho-magmatic deposits, deposits related to granites, Cu-porphyries, ore deposits in mid-ocean ridges and ophiolites. Hydrothermal ore-forming systems related to metamorphic processes; ore deposits in supergene and sedimentary settings.

b) Non-metallic mineral deposits:
Introduction into the use and properties of industrial minerals, earths and rocks, salt and gemstones (diamond only).

c) Research project on ore deposits:
This course emcompasses the guided independent study of well-characterized hydrothermal ore deposits using hand specimens, thin- and polished sections and a range of whole rock and mineral-chemical data. This course introduces students to research-oriented learning and is aimed at preparing the students for their Master projects.

Types of courses: Lectures, practicals, project work in small teams

Types of examinations: Written examination on the contents of courses a) and b); extended abstract and oral presentation in c).

Requirements for the award of credit points: Passing grade for the written examination and extended abstract/oral presentation.

For further information please check the M.Sc. Module Handbook Geosciences

Term: 1. + 2. Sem.

Credits: 10 CP

Module coordinator and lecturer(s): Prof. Dr. Christophe Pascal

Courses:
a) Lectures, seminars, exercises in structural geology, 2 SWS
b) Special methods in structural geology, 2 SWS
c) Structural geology field camp, 2 SWS

Prerequisites: For students enrolled in the MSc curriculum

Learning outcomes: The purpose of the module is to make the students familiar with advanced concepts in structural geology and tectonics. The theoretical and practical teaching and training offered in the module is highly relevant for industry, in particular for exploitation of mineral and water resources. After achievement of the module the student is

  • acquainted with different applications of structural geology.
  • knows the most important mechanisms leading to basin formation and subsidence.
  • is able to elaborate a coherent geological model from field data.

Internationalisierung: Geländekurse finden weltweit statt.

Content: The module is organised in three courses, progressing from general aspects in structural geology to the specific tectonics leading the evolution of sedimentary basins. Finally, a
field camp consolidates the knowledge acquired in the classroom.

a) Lectures, seminars, exercises in structural geology:
The aim of the lecture is to consolidate and deepen fundamental aspects in structural geology. During the two first sessions basic notions are recalled by the instructor. The following sessions consist of oral presentations by the students. The topics to be presented are selected by the participants according to a list of scientific papers proposed by the instructor. In addition, the writing of an essay following the oral presentation is required.

b) Special methods in structural geology:
This lecture addresses different aspects of basin tectonics. After an extensive review of the main characteristics of the different types of sedimentary basins (i.e. stretching, strike-slip and flexural), theoretical aspects on mechanisms driving basin subsidence are presented. In particular, emphasis is put on flexure mechanics, isostasy and the thermal regime of the lithosphere. Topics covered include global tectonics, tectonic structures, fault mechanics, lithospheric stresses, basin tectonics, subsidence, rift basins, McKenzie’s model, flexure mechanics, foreland basins, and strike-slip basins. Preliminary knowledge in tectonics/structural geology, geodynamics and geophysics is an advantage.

c) Structural geology field camp (8 days)
The exercise involves the structural/geological mapping in fine detail of selected areas using traditional techniques and tools (i.e. compass, hammer, lens...). As such the field camp aims to strengthen field work experience and sharpen geologist skills. In the course of the writing of the report, the student will learn how to analyse field data and how to extract from them a coherent geological synthesis.

Teaching methods: Lectures, exercises and training in the field

Mode of assessment: Lectures: written exam (2h), oral presentation (20-30 mins), essay (30 p.); Field course: report

Requirements for the award of credit points: Positive evaluation of the exams and successful participation in the field course

For further information please check the M.Sc. Module Handbook Geosciences

More information

Studium

Applied Geothermics

A new binational double-degree master’s programme at the Ruhr University Bochum and the Universidad Nacional San Juan in Argentina

 

Research in the Institute for Geology, Mineralogy and Geophysics

Research

Here you can learn everything about the research work of the IGMG working groups