Experimentelle Geophysik

Kursangebot

BSc
(alle Kurse auf Deutsch/all classes in German)

1. Semester, LV-Nr. 176104
Dozent: Prof. Dr. Joerg Renner

Einordnung und Ansatz der Mechanik; Körpereigenschaften (Dichte, Schwerpunkt, Trägheitsmoment); Kraft und Drehmoment; Spannung, Verformung, elastische Kenngrößen

1. und 2. Semester, LV-Nr. 176105 und 176203
Dozent: Prof. Dr. Joerg Renner

Physik I
Mechanik des Massenpunkts; Mechanik starrer Körper; Schwingungen und Wellen; Wärmelehre

Physik II
Elektrizitätslehre; Elektrische Schwingkreise; Optik: Strahlen und Wellen; Elementare Atomphysik (Schalenaufbau, Röntgenstrahlung, Welle-Teilchen-Dualismus)

4. Semester (Wahlbereich), LV-Nr. 176401
Dozent: Prof. Dr. Joerg Renner

Vorlesungsinhalt

I) Einführung

  1. Zielobjekte der geophysikalischen Prospektion/Exploration
  2. Grundlagen der digitalen Datenaufzeichnung und -bearbeitung

II) Potentialverfahren: Grundlagen und Messtechniken

  1. Gravimetrie
  2. Geoelektrik
  3. Magnetik

III) Wellenverfahren: Grundlagen und Messtechniken

  1. Vom Seismogramm zum Untergrundmodell
  2. Bodenradar

IV) Bohrlochmessungen und Bohrlochstabilität

Lernziele

Nach dem erfolgreichen Abschluss der Veranstaltung

  • sind Studierende mit den Ansätzen, dem Potential aber auch den Limitationen zerstörungsfreier Untersuchungen des Untergrunds soweit vertraut, dass sie in der Lage sind, für ein sich stellendes Explorationsproblem bzw. eine Untergrunderkundung ein Konzept zu erarbeiten, das die Vor- und Nachteile der verschiedenen geophysikalischen Methoden gegeneinander abwägt
  • haben Studierende ein Verständnis des Zusammenhangs zwischen den physikalischen Eigenschaften im Untergrund und dem Ergebnis einer Messung an der Oberfläche bzw. in Bohrlöchern entwickelt
  • können Studierende einfache Datensätze bearbeiten und mit selbsterstellten Modellkurven auswerten sowie physikalische Eigenschaften von Gesteinen berechnen

4. Semester (Wahlbereich), LV-Nr. 176408
Dozenten: Dr. Kasper Fischer, Prof. Dr. Wolfgang Friederich, Prof. Dr. Joerg Renner

Im geophysikalischem Geländekurs sollen die in den Vorlesungen Allgemeine und Angewandte Geophysik kennengelernten geophysikalischen Messverfahren zur oberflächennahen Erkundung praktisch durchgeführt und vertieft werden. Bestandteile des Kurses sind die aktive und selbstständige Benutzung der Geräte, Erkennen der Stärken und Schwächen der Methoden und die Folgen für die Kombination von Messungen sowie die angeleitete Auswertung der Messdaten.

Im Rahmen des Geländekurses werden vier Feldversuche durchgeführt und ausgewertet:

- Refraktionsseismische Messungen (Hammerschlagseismik)
- Geoelektrisches Sondieren und Kartieren
- Profilmessungen der Magnetfeldstärke
- Georadarsondierungen

5. Semester, LV-Nr. 176508
Dozent: Prof. Dr. Joerg Renner

Einführung in ArcGIS: Konzept ArcCatalog - ArcMap – ArcTools
ArcGIS Kartengrundlagen (Vector/Raster, coverages, shapefiles, geodatabase, tiffs, jpgs)
ArcCatalog (Verwalten von Geodaten, Metadaten erzeugen und aktualisieren)
ArcMap Grundlagen (ArcMap basics)
Datenerfassung (Editing Data), Georeferenzieren, Grundlagen des Editierprozesses, Onscreen digitizing, Topological features
Bildschirmdarstellung (Displaying data)
Vektorflächenkarten und Rasterkarten, Thematische Karten und Diagramme
Datenabfrage (Querying data)
Arithmetische und logische Operationen, räumliche Operationen
Kartenausgabe (Symbole, Texte, Schraffuren, Platzierung, Duplizierung, Rotation, Rahmen, Legende, Styles)
Praktische Anwendungen: Thematische Karten, Planungskarten

5. oder 6. Semester (Wahlbereich), LV-Nr. 176512
Dozent: Prof. Dr. Joerg Renner

Vorlesungskapitel

  • Die Erde von außen
  • Schalenaufbau der Erde
  • Das Konzept von Platten
  • Plattengeschwindigkeiten
  • Energiebetrachtungen zu Platten
  • Wärmefluß und Temperaturverteilung
  • Rayleigh-Zahl für den Erdmantel, Rhelogische Eigenschaften, Konvektion
  • Konzepte der Geochronologie

Lernziele

Die Studierenden sollen lernen, für tektonische Beobachtungen Modelle zu entwickeln, die die Anwendung physikalischer Konzepte erlaubt, wobei im Fordergrund die Frage nach den treibenden Kräften steht.

MSc
(alle Kurse auf Englisch/all classes in English)

Module: Applied geophysics II, LV-Nr. 177021
Dozent: Prof. Dr. Joerg Renner

Chapters

  1. Introduction to reservoirs (hydrocarbon, geothermal)
  2. Physical properties of reservoir fluids
  3. Hydraulic transport (Kozeny-Carman relation) and storage (linear poro-elasticity I: isostatic stress states)
  4. Theory and practice of pumping tests (diffusion equation, scaling)
  5. Geothermics (add advection to diffusion)
  6. Aspects of waves in real media (wave equation, linear poro-elasticity II: add deviatoric stresses)

Learning targets

After successful completion of the module students should

  • appreciate the scale-dependent approach to the physical characterization of rocks (micro- to decimeter-scale) and reservoirs (deci- to kilometer-scale)
  • understand the relation between physical properties of rocks and their chemical composition and microstructure
  • have learned the use and limits of empirical and theoretical concepts for the description of heterogeneous media
  • know the practical aspects of a suite of methods in exploration geophysics
  • be familiar with the mathematical description of physical processes on rock and reservoir scale
  • understand the origin of the governing partial differential equations and master some approaches to their solution

Module: Applied geophysics II, LV-Nr. 177053
DozentInnen: Prof. Dr. Joerg Renner, Dr. Marieke Rempe

Chapters

  1. Introduction to rocks and minerals
  2. Porosity and interface phenomena
  3. Hydraulic transport in rocks (Darcy's law, permeability models)
  4. Elasticity (stress, strain, Hooke's law, averaging schemes)
  5. Failure of rocks (fracture and friction)

Laboratory practical

Students independently conduct simple experiments to determine basic physical properties of rocks (density, porosity, permeability) and fluids (density, viscosity)

Learning targets

After successful completion of the module students should

  • appreciate the scale-dependent approach to the physical characterization of rocks (micro- to decimeter-scale) and reservoirs (deci- to kilometer-scale)
  • understand the relation between physical properties of rocks and their chemical composition and microstructure
  • have learned the use and limits of empirical and theoretical concepts for the description of heterogeneous media
  • know the practical aspects of a suite of methods in exploration geophysics
  • be familiar with the mathematical description of physical processes on rock and reservoir scale
  • understand the origin of the governing partial differential equations and master some approaches to their solution

Module: Physics of the solid Earth II, LV-Nr. 177032
Dozent: Prof. Dr. Joerg Renner

Chapters

  1. Differentiation and integration of scalar and vectorial fields
  2. Kinematics (Euler and Lagrange description)
  3. Conservation laws in differential and integral form (Navier-Stokes equations)
  4. Applications (Specific cases of the Navier-Stokes equations and similarity numbers)

Learning targets

After successful completion of the module students

  • know micromechanical/atomistic concepts behind bulk properties (in particular density and viscosity)
  • appreciate the basic theoretical concepts of solid-state physics and thermodynamics
  • are familiar with the basic approaches and techniques in continuum mechanics
  • understand the basic concept of numerical solution of differential equation master
  • are capable of coding simple finite-difference schemes
  • grasp the relevance of physical properties of rocks for geodynamic problems, such as subduction and delamination
  • can apply the introduced mathematical tools to problems encountered for the three Earth spheres, atmosphere, hydrosphere, and geosphere

Module: Physics of the solid Earth II, LV-Nr. 177005
Dozent: Prof. Dr. Joerg Renner

Chapters

  1. Geophysical and geochemical Earth models
  2. Elastic constitutive equations for minerals at high temperature and pressure
  3. Crystal defects (point defects, dislocations, grain boundaries)
  4. Deformation mechanisms at high temperatures (diffusion and dislocation creep)
  5. Applications of flow laws to geodynamic problems

Learning targets

After successful completion of the module students

  • know micromechanical/atomistic concepts behind bulk properties (in particular density and viscosity)
  • appreciate the basic theoretical concepts of solid-state physics and thermodynamics
  • are familiar with the basic approaches and techniques in continuum mechanics
  • understand the basic concept of numerical solution of differential equation master
  • are capable of coding simple finite-difference schemes
  • grasp the relevance of physical properties of rocks for geodynamic problems, such as subduction and delamination
  • can apply the introduced mathematical tools to problems encountered for the three Earth spheres, atmosphere, hydrosphere, and geosphere

Module: Applied geothermal energy, LV-Nr. 177015
Dozent: Prof. Dr. Joerg Renner

Content

Fundamentals and methods of deep geothermal energy: Potentials and uses in Germany and internationally, geophysical exploration and characterisation of deep geothermal reservoirs

Learning targets

After successful completion of the module students

  • be able to dimension simple planning examples for geothermal plants and to determine the necessary parameters
  • understand various sub-areas of geothermal energy (shallow and deep geothermal energy) as well as the different types of geothermal systems (hydrothermal, petrothermal, open and closed systems)
  • understand the theoretical background and current calculation methods
  • know the legal principles and guidelines for the construction of geothermal plants and boreholes. The deep geothermal energy course deals with physical heat transfer processes at greater depths and the associated processes that are important for the optimal energy yield of such systems.

LV-Nr. 177024

Content

Supervised work on a specific topic in the research area of the geophysical working groups of the RUB or, after consultation with lecturers, also external companies, research institutions or public agencies. The workload should correspond to about 20 working days. Tasks can also be worked on by small groups. Interested students should contact lecturers working in the student's area of interest.

Objective

The students should be introduced to independent scientific work and learn the formal aspects of reporting on a scientific project. After successful completion of the module students are able to tackle and master a defined task in a timely and organized way.

I Rudiments: LV-Nr. 177054, II Analysis & Interpretation: LV-Nr. 177052
Dozent (Lehrauftrag): Achim Ruebel (Contact: achim.ruebel % rub.de)

Well Logging I, lecture or block course:

In professional live most students will face well logs. This lecture presents an overview on borehole logging methods. All standard well logging methods for civil engineering (geotechnics), water and environment, mineral exploration and geothermal projects are presented (physical background, application, limits….).

Well Logging II, block course:

Application/interpretation of well logs using an interpretation software. The content of this course may vary, depending on number of students and their specialisation (hydrogeology, geotechnics, exploration…).

LV-Nr. 177099
Dozent: Dr. Ingo Heyde, Bundesanstalt für Geowissenschaften und Rohstoffe, B1.4 Marine Rohstofferkundung (Ingo.Heyde % bgr.de)

Overview of the main questions that are addressed by marine geophysics, respectively, were important for the last decades. Simultaneous presentation of the methods that were most important for the respective problem.

Methods

  • marine magnetics 
  • bathymetry
  • reflection and refraction seismics
  • marine gravity
  • geothermics / heat flow density
  • marine electromagnetics

Case histories

  • passive continental margins
  • oceanic crust, mid-ocean ridges
  • subduction zones
  • exploration of deposits (hydrocarbons, gas hydrates, polymetallic nodules and massive sulphides)

Das könnte Sie auch interessieren